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ABSTRACT

Solutions are derived for adhesive-bonded joints of non-classical geometries.

Particular attention is given to bonded doublers and to selective reinforcement

by unidirectional composites. Non-dimensionalized charts are presented for the

efficiency limit imposed on the skin as the result of the eccentricity in the

load path through the doubler. It is desirable to employ a relatively large

doubler to minimize the effective eccentricity in the load path. The transfer

stresses associated with selective reinforcement of metal structures by

advanced composites are analyzed. Reinforcement of bolt holes in composites by

bonded metal doublers is covered quantitatively. Also included is the adhesive

joint analysis for shear flow in a multi-cell torque box, in which the bond on

one angle becomes more critical sooner than those on the others, thereby

restricting the strength to less than the total of each maximum strength when

acting alone. Adhesive plasticity and adherend stiffness and thermal imbalanc-

es are included. A simple analysis/design technique of solution in terms of

upper and lower bounds on an all-plastic adhesive analysis is introduced. This

is far simpler than the more precise elastic-plastic adhesive analysis and, in

most cases is of adequate accuracy. An analysis of tapered-lap bonded joints

is included and this shows how to alleviate the peel-stress problem character-

istic of thick uniform double-lap joints. The tapered-lap joints remain fully

efficient for thicknesses above which the uniform double-lap joint becomes

inefficient. Illustrative examples are included throughout the text.
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SYMBOLS

= Integration constants

= Cross-sectional area of adherend (in. 2)

= Flexural rigidity of adherends (Ib in. 2)

= Length of elastic zone in adhesive bond (in.)

= Young's modulus (longitudinal) for adherend (psi)

= Adhesive peel (transverse tension) modulus (psi)

= Edge distance (in.)

= Adhesive shear modulus for elastic-plastic representation (psi)

= Adherend in-plane shear moduli (psi)

= Bending stress coefficient

= Load sharing factor (Figure 12)

= D / [Et3/12(I __2)] = bending stiffness factor for compos-

ite adherends

= Overlap (length of bond) (in.)

= Bending moment in adherend (Ib in. / in.)

= Applied direct load on entire joint (Ib / in.)

= Shear stress resultant (in-plane) in adherend (Ib / in.)

= Co-ordinate in plane of adhesive layer (in.)

= Temperature (°F)

= Temperature change (Toperating - Tcure) (°F)

= thickness of adherend (in.)

= Transverse shear force on adherend (Ib / in.)

= Transverse deflection of adherend (in.)

= Width of bond-line (in.)

x = Axial (longitudinal) co-ordinate parallel to direction of load

(in.)
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SUMMARY

It is not usual to find adhesive bonded joints in aerospace structures which

conform precisely to the geometry and load conditions of the classical classes

of joints on which tests are performed. The objective of this report is to

apply to practice some of the analysis/design capability developed by the

elastic-plastic formulation of the classical (double-lap, single-lap, stepped-

lap, and scarf) joints. Particular attention is devoted to bonded doublers,

with a range of end support conditions. Non-dimensionalized charts are present-

ed for the efficiency limit imposed on the skin as the result of the eccentric-

ity in the load path through the doubler. It is desirable to employ a relative-

ly large doubler to minimize the effective eccentricity in the load path. In

addition, consideration is given to the selective reinforcement of metal struct-

ures by unidirectional composites and of composites by bonded metal doublers

around bolt holes. In the former case, the key issue is the load transfer at

the end of the composite reinforcement while, in the latter case, the usual

problem is that of load transfer between the metal doubler and the composite

part. Also to be found in this report is an analysis of the bond stress and

strain distributions for shear flow in a multi-cell torque. A technique of

alleviating the peel-stress problem for thick uniform double-lap joints is des-

cribed and analyzed. The optimum tapering of the outer adherends is shown to

eliminate the peel problem while adding 24 per cent to the bond shear strength.

Adhesive plasticity and adherend stiffness and thermal imbalances are accounted

for. A simple analysis/design technique of solution in terms of upper and lower

bounds on an all-plastic adhesive analysis is introduced. This is far simpler

than the more precise elastic-plastic adhesive analysis and, in most cases, is

of adequate accuracy. Indeed, in many cases such solutions are simpler than a

perfectly-elastic method. Consequently, analytical solutions can be obtained

for a far graeter range of joint configurations and complex load conditions than

is possible with more precise methods.

Illustrative examples are included throughout the text to explain how to employ

the analyses derived.





I. INTRODUCTION

It is unusual in the design of aircraft and space vehicles to encounter an

adhesive-bonded joint of precisely one of the classical families of analysis

such as the double-lap joint, the single-lap joint, the scarf joint, and the

stepped-lap joint. It is even more unusual to encounter simultaneously a pure

form of load application, such as tensile lap shear which is the basic test

condition. The differences in load capacities for compressive lap-shear and

in-plane shear are discussed in companion reports (References I, 2, and 3).

The purpose of this report is to apply the basic analysis techniques established

in References I, 2, and 3 for double-lap single-lap, and scarf and stepped-lap

joints, respectively, to joint configurations more frequently encountered in

aerospace practice.

Perhaps the most numerous applications of adhesive bonding are to be found in

the form of bonded edge doublers for flush mechanical attachments. Such applic-

ations share many of the governing equations for unsupported single-lap joints.

The limiting characteristic is usually not that of adhesive shear or peel but of

the non-uniform load distribution across the thickness of the main sheet just

outside of the doubler. It has long been known that the doubler must be flex-

ible in bending at its tip to diffuse load transfer gradually. This is why

feathered edges and fingered doublers are so widely employed. The analyses here

confirm the need for such procedures and provide a rational basis for design.

Another application, of growing importance in the form of metal structures

selectively reinforced with advanced filamentary composites, is that of a

bonded-on area doubler, usually unidirectional unless it is thick. Such

doublers are quite distinct from edge doublers inasmuch as the latter serve

principally to reduce a stress level locally while the former are more of the

principal load path type of structure. As such it is usual to minimize the

eccentricities in the load path, to provide moment-resistant supports, and aim

for the much higher efficiencies of double-lap joints. The key problem with

this class of bonded structure is usually that of load transfer at the ends.

If the area of the bonded-on doubler is too large in proportion to the bond



area, the weak link will be the shear capacity of the adhesive at the ends of

the doubler.

A common problem in composite structures is that of bonded metal doublers in an

area of mechanical attachments. An analysis technique and illustrative example

are provided.

The fourth class of non-classical adhesive-bonded joints is concerned with the

transfer of in-plane shear loads. The pure form of this problem, from one

member to another, is covered in References l and 3. (The single-lap case is

governed by the analyses of Reference l for this situation.) The analytically

more challenging problem arises in multi-cell torque boxes, such as aircraft

wings. The best known illustrative example is that of a wing skin to spar web

attachment, with a change in skin shear flow at the intersection. The boundary

conditions for each leg of such a joint differ from those of a single-transfer

joint, but the governing equations are of the same form. A related problem also

covered by the analysis in this report (with appropriate boundary conditions)

is that of the shear flow between a spar (beam) web and a concentrated cap.

Approximate analysis techniques for combined loading on joints are suggested.

These are based on the concept of the maximum adhesive shear strain being the

square rooot of the sum of the squares of orthogonal strain components.

In the more complicated joint configurations it does not prove practical to

perform precise elastic-plastic analyses. It is quite effective to obtain

simpler solutions in terms of upper and lower bounds by means of perfectly-

plastic adhesive analyses. The simplification arises from the elimination of

the "boundary" conditions at each of the elastic-to-plastic transitions. This

simplification is even more powerful than just a reduction in number of boundary

conditions because the location of such transitions is not known at the start of

an analysis and, furthermore, it shifts as the load intensity is changed. (See

References l, 2, and 3). Further justification for this technique is provided

by the fact that, for ultimate static load, the upper and lower bounds are

quite close together for the ductile adhesives used in subsonic commercial

aircraft structures. Even though such bounds are further apart for the brittle

adhesives needed for high-temperature zones on supersonic aircraft, they

4



represent a considerable improvementover the blanket application of a uniform

shear stress developed from single-lap shear tests. This report, in conjunction

with the companionReferences l, 2, and 3 provides all the background and

techniques necessary for a more precise elastic-plastic analysis if ever needed.

The report concludes with a description of a powerful technique to obtain peel-
stress relief for thick uniform double-lap adherends. This consists of tapering

the outer adherends to make them flexible at the tip in order to prevent the

peel stresses from ever developing. This technique has been used in practice
for a considerable time. By meansof the fully-plastic analysis method

outlined above, it was possible to determine the optimumproportions to not

only achieve peel-stress relief but also to simultaneously maximize the shear

transfer capacity of the tapered-lap bondedjoint.

5





2. ADHESIVE-BONDED DOUBLERS

One of the most frequent applications of adhesive bonding in aircraft struct-

ures is that of bonded edge doublers. Two important applications are the build

up in thickness to permit the use of flush fasteners in thin gage sheet metal

and the fingered or feathered-edge doublers around panels subjected to accoustic

fatigue loads. In either case, the bond itself is not usually the limiting

element in the strength of the structure. The adhesive shear load can usually

be developed in about half an inch or so of plastic zones (while the overlaps

are typically very much greater) and typical design practice excludes substant-

ial differences in thickness at the edge of the doubler (and thereby minimizes

any potential peel-stress problems). The dominant limiting feature is the

eccentricity in load path when a doubler can be fitted on one side only of the

structure as is the case for external skins. The relevant analyses are akin to

those for the single-lap joint (Reference 2).



2.1Adherend Stresses in Adhesive-Bonded Doublers

It is customary to make fingered doublers less thick than the skin to which

they are bonded (typically 0.6 times as thick or one skin gage less if very

thin). Therefore, with reference to the single-lap joint analysis of Reference

2, equation (152) is of interest here rather than the moment at the other end

of the single-lap joint which dominates that analysis. The distance (e - e) in

equation (152) of Reference 2 refers to the distance between the point of

inflexion (M = O) and the edge of the doubler and may consequently be less than

the total overlap. Here, the end-support condition selected for analysis is

that of the skin/doubler combination being built in. Also, the analysis of

Reference 2 is adapted to provide for simply-supported ends. A comparison of

the two sets of answers so derived indicates that the former is related to the

latter by a factor of 2 (to some five or six significant figures) in the extent

of the overlap. Other end-support conditions can therefore be analyzed by

interpolation.

The geometry governing the present analysis is defined in Figure I. The load

is assumed to be reacted at the neutral axis of the skin/doubler combination.

It is easily shown that this stiffness "centroid" is located at a distance from

the middle of adherend 4 of

(ti + t4 + 2n)

EC 4 : E4t4 (l)0--)EILI

Throughout the adherend 4, outside the overlap, the longitudinal stress result-

ant (force per unit lateral width) is uniform, at the value P of the applied

load. The stress couple M4, per unit width, is then defined by the equilibrium

equation

M 4 = PI( (tl + t4 + 211) Ix4"_ I

for -_4 ! x4 ! O. (2)

The classical theory for the infinitesimal deformation of thin, cylindrically

8



bent plates then yields

d2w4 M4

dx4 2 D 4

E4t4
D4[(_4+ £d) i + Eltl

(3)

whence

w 4 = A 4 cosh(_4x 4) + B 4 sinh([4x4) +

E4t4 '(_4 + _a) i +
Eltl

(4)

where

P 12P(1 - _4 2 )

2 = --= (5)
D4 (kb)4E4t4 3

The assumption of negligible moment restraint at x4 = o (or, equivalently, that

z4 is so large in comparison with _d that the precise nature of the end condi-

tion is immaterial) prescribes that

A 4 = 0 (6)

The behavior of regions 2 and 3 (Figure I) is governed by precisely the same

equations as for the single-lap joint analysis (Reference 2), with the excep-

tion that, here, at s = o the boundary conditions differ. The equations are

set up simply as

--- V2 + T = 0

ds

---V3+ • = 0

ds

(7)

dT2

--+ T = 0

ds

dT 3

--- T -- 0

ds

(8)



dV 2

--+Ods c = 0 1dV 3

---o = 0
o

ds

(9)

d2w2 M 2 12M2(I -Vl 2)

- I
ds 2 D I (kb)IEltl 3

d2w3 _ M3 12-343(1 -u4 2)
-- w

ds 2 D4 (kb)4E4t4 3

As in Reference 2 it is necessary to use the approximations

(10)

W 2 = W 3 ,

dw 2 dw 3

ds ds

(ll)

while maintaining the distinction between the higher derivatives• From the

equations above,

d2(w2 + w 3) Me M3

ds 2 D I D4

(12)

d3(w2 + w3) V 2 __tl+ _)V3 _t4+n i
= _ -- + -- -- + D4 \T j 'ds 3 D 1 DI\ 2 , D 4

d4(w2 + w3) °= c _ c+° (tl+q t4+ nldT-- +
ds 4 D 1 D 4 2D 1 2--_4 ]7

(13)

(14)

d 2 (w 2 - w 3 ) M2 M3

ds 2 D l D4

(]5)

and, since for an adhesive obeying a linear elastic law in tension (peeling)

(J
o

E
c

(W 3 - W2)

(16)

i :+o
ds 4 w I D_ i n

Equations (]4) and (]7) indicate coupling between the shear and peel stresses

in the adhesive. In order to obtain an explicit solution expeditlous]y, an

I0



approximate solution will be adopted with sufficient integration constants to

satisfy the dominant boundary conditions. The simplest such solution, used

also in Reference 2, is

½(w2 + w3) _ A23s3 + S23s2 + C23s + F23 (18)

The conditions at s = 0 for a built-in end of the skin/doubler combination

permit the setting of

c23 = F23 = 0 (19)

(For simply-supported ends, the corresponding relations would be

B23 = F23 = 0 ) (20)

As in Reference 2, it is assumed that

dw 2 dw 3

~ at s = o and s = _d (21)
ds ds

but that the distinction between the second derivatives is of paramount import-

ance since

d2w3 M d2w2

_ o , --_ 0 at s = _d (22)
ds 2 D 4 ds 2

(Note the sign convention for positive values of M , the critical moment in the
o

adherend.) The pertinent boundary conditions, at s = Cd' x4 = -_4 are

w 4 = - B4sinh(_4_4) - E4t4

L4 + _d i +-

Eltl

= l(w 2 + w 3) = A23(9,d)3 + .B23(J_d )2
2 (23)

1dw 4 It I + t 4 + 2_]. 1 1

-- = B4_4c°sh(_4_4) + _ [ E4t4_ 2
dx4 _4 + _d |i + --

!\ Eli I

i d(w2 + w3)

2 ds = 3A23(_d)2 + 2B23(Zd)
(24)

11



d2w4

dx4 2

M

__ = o = _ B4{42sinh(_4i4)--

D4

l_/d2(w2 + W 8)

ds 2

d2(W2 - W3) _ M O

__ } = 6A23(£ d) +-
ds 2 2D4

and, for sufficiently large _4_4,

s±nh(_4_4)= 0os_(_4_4)= !e(_4_4)
2

By a process of elimination it is established that

M° Z + ]-( + A_( 2 ........ _
2 IZ + 2(_s + _'d)

\ Edt d /

Pt d

2

Equation (27) holds for built-in ends. It follows from equation (152) of

Reference 2 that, for simply-supported ends,

(25)

(26)

(27)

(28)

_I ts 2_1M ° i + (Cs£ d) + g(_s£d ) = + Ests I

i Edtd j

Ptd . (30)

2

In these equations, the subscripts d and s refer, respectively, to the doubler

and skin, being equivalent to the subscripts 1 and 4. The bending stiffness

parameter _ for the skin is given above as
s

P 12P(1 - _ 2)
2 - - S (31)

s D s (kb) sEsts 3

In this, the coefficient kb serves to uncouple the bending and extensiona]

stiffnesses so that the analysis covers filamentary composite materials as well

12



as the isotropic metals. (In the computer programs listed in the Appendix, the

ratio Es/E d is set equal to unity. That is, the skin and doubler materials are
the same. This restriction is in accord with common practice, but can easily

be over-ridden in a specific case. Likewise, the assumption in equation (28)

that the doubler is small in comparison with the extent of the skin can also

be refined if desired.) The maximum stress in the skin, at the edge of the

doubler, follows from equation (27) or (29) as

6M
maxu - + - _ (I + 3k) (32)

max t t 2 avg
S S

Equations (28), (30) and (32) are programmed to be solved by iteration in the

digital computer program listed in the Appendix. Representative solutions, in

non-dimensionalized form, are shown in Figures 2 and 3. It is apparent that,

for all practical purposes, the point of inflexion in the built-in case is in

the middle of the doubler since doubling the _/t ratio with respect to the

simply-supported case yields the same joint stresses when computed for the

built-in case. It can be seen clearly that the effective length of the overlap

should be as large as practical. Trying to save weight by skimping on the

doubler has the effect of reducing significantly the allowable skin stress

(Oavg/ama x < i) SO that a major weight penalty can be suffered for the entire

panel. This is why fingered doublers are customarily applied with quite long

overlaps rather than shallow scallops. The analysis above governs the fatigue

failure mode illustrated in Figure 4. The cracks originate on the doubler side

of the skin at the extremities of the fingers. Such cracks do not tend to

occur on the (sloping) sides of the fingers because no clearly definable axis

for bending of the skin exists there. The experimental evidence is strong that

doublers should be either fingered or have feathered edges to prevent the form-

ation of a long continuous crack in the skin adjacent to the edge of the

doubler.

It will be noticed that nowhere in the analysis above is there any involvement

of the adhesive properties. Consequently the solution can be applied also to

integral doublers formed by chem-milling of a thick skin. In doing so,

however, it must be recognized that there is an additional stress concentration

due to the abrupt change in thickness which is not eliminated for the integral

doubler as it is for the bonded doubler by the layer of adhesive.

13



EXAMPLE 1:

To illustrate the use of the analysis above, consider a 2024-T3 aluminum skin

0.025 inch thick with a doubler 0.015 inch thick. The required skin efficiency

is 90 per cent, so the minimum overlap is read from Figure 2 as

= 0.025 x 14.85 / 0.22168 = 1.67 inch.

(An increase to _ = 2.65 inch overlap would be needed to raise the skin

efficiency to 95 per cent.)

14



2.2 Adhesive Shear Stresses in Adhesive-Bonded Doublers

Consideration of adhesive stresses is not necessary in most bonded (edge)

doubler applications because the analysis above for skin efficiency tends to

over-ride such considerations. Nevertheless, the bonded doubler serves to

illustrate simply the use of modified all-plastic design concepts for

structural bonded joints.

The natural desire for high adherend efficiency is satisfied by minimizing the

effect of any eccentricities in load paths. The accomplishment of this mini-

mizes the differences between the actual adhesive stress distributions and

those of a supported (double-lap) joint. Therefore, instead of adapting the

more complex analysis of Reference 2 to the boundary conditions of bonded

doublers, the simpler analysis techniques of Reference l are employed. The

analysis presented here (see Reference 4) accounts for adhesive plasticity,

while assuming that the skin and doubler remain elastic. An algebraic solution

is derived which is sufficiently simple for design use. The solution describes

the adhesive shear stress distribution between the skin and doubler, identify-

ing the critical region (a narrow strip along the edge of the doubler) and

those other regions in which small manufacturing defects can be tolerated with-

out impairing the structural efficiency of the design. This analysis shows how

to size minimum bond areas by estimating the extent of plastic adhesive zone

necessary to transfer the load (and check that the adhesive is capable of gen-

erating such strengths for the given adherends) and adding to this the distance

required to build up the elastic adhesive stresses from zero to the plastic

level. This approach is more meaningful than that of sizing in terms of a uni-

form bond shear stress, no matter how the "allowable" was arrived at.

Peel stresses in the adhesive (or interlaminar tension stresses in an adjacent

composite adherend) become a progressively more severe problem for either short

overlaps or thick sections. Usually these conditions are not encountered in

practical doubler design. In the event that they are, the single-lap joint

analysis of Reference 2 can be modified easily in much the same manner as for

the adherend analysis in Section 2.1 above.

15



Figure 5 depicts the geometry and nomenclature for the analysis of an arbitrary

adhesive-bonded skin/doubler combination. A uniform tensile load P (per unit

width) is applied to the skin and taken out at a row of close-spaced rivets

adjacent to the outer edge of the skin/doubler combination. A compressive load

would be equally well accounted for by this analysis, but it is necessary here

to establish a sign convention. In order to define the problem sufficiently to

permit a solution to be obtained it is assumed here that, at the row of rivets,

both skin and doubler act is unison, each transferring load to the rivets in

proportion to their extensional stiffness. It is also assumed that the doubler

extends sufficiently beyond the row of rivets for the local stress variations

around the rivets not to affect the analysis in the region of adhesive shear

load transfer. The row of rivets are replaced mathematically by a thick

extension beyond the end of the original skin and the doubler, as depicted in

Figure 5.

The conditions for horizontal force-equilibrium for a differential element dx

within the adhesive bonded area are

dT d dT
_+ T = 0 , ____s T = 0 , (33)

dx dx

in which the subscript s refers to the skin and d to the doubler.

strain relations for the skin and doubler yield

d6 T d6 d T ds s

d_x E t dx Edt ds s

The adhesive shear strain y is approximated by the relation

The stress-

(34)

(a - 6d)
Y = s (35)

n

and, within the elastic region (of unknown length s), the adhesive shear stress

is assumed to be

a(6 - aa)
= oy - s - f(x) (36)

while, throughout the remaining plastic region (of unknown length w), the

adhesive shear stress is assumed to be constant, at the plastic adhesive shear
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stress

T = T = constant (37)
P

To solve the governing differential equations one eliminates _ and _ between' s d

equations (34) and (35) and then uses equations (33) to eliminate Ts and _d'

yielding the differential equations

(38)

- + = 0 (39)

ctz2 E
s d

Within the elastic region, which is assumed to extend to the rivet line because

of the small relative displacement in that region, equation (39) becomes

_- 12y = 0 12 = +

dx2 s Edtd}

(4O)

In the elastic solution,

v = i sinh(Ix) + B cosh(Ix) , (41)

the constant B can be set identically equal to zero because of the assumed

absence of relative displacement across the bond line at the row of rivets.

Equation (38) then predicts that the loads in the skin and doubler are not

proportional to their respective stiffnesses at the row of rivets. In other

words, the shear deformation in the adhesive prevents the doubler from fully

developing a load in proportion to the relative stiffness of the skin and doub-

ler. Provided that the doubler is not excessively narrow, this effect is

inconsequential, as is confirmed by the analysis below.

In the plastic region, of assumed length w at the inner end of the doubler, the

solution of equation (39) is

_2
y = _-_ Tp_ 3 + CC + F (42)

in which dx = d_, the origin for _ being at x = +s.

The constants B, c and F and the unknown s or w are found by satisfying the
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boundary conditions

7 = "( at x = s, C = 0,
e

Y = Ye + Yp at _ = w,

dy = dy at x = s, _ = 0,
dx d_

dy_ P
at C = w,

d_ Et n
s s

of which equation (45) ensures continuity in the adherend stresses. Hence

F = Ye = Tp/G ,

A = ¥ /sinh(Is) = T /[G sinh(Is)]
e p

_T

C - P

G tanh(Is)

From equation (45) it now follows that

i 12 i
lw + = + 2Yp

tanh(Is) tanh2(Is) Ye

so that, from equation (46)

P = w +

tanh( Is ) Edt d !

whence

tanh 2 (Is ) ]2Ests 1
i+_

p !

(43)

(44)

(45)

(46)

(47)

(48)

(49)

(5O)

(51)

(52)

Precise evaluation of these equations requires a digital computer program

but, for sufficiently long overlaps, tanh(_s) ÷ Z, whence

(lw + 1) 2 ÷ i + 2Yp -*

Ye I( )l- "Ests "
i

P Edt d

(53)
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The failure criterion for the adhesive is taken to be the exceeding of its

total shear strain capacity (Ye + _p)' which has been shown to be a realistic

approach in Reference I.

Just as in the analysis of bonded lap joints (References 1 and 2), the e/tent

of the plastic adhesive zone is limited by the adhesive and adherend properties

and does not increase indefinitely with increasing applied load. i_,_t of Lhe

load transferred by the adhesive bond between the skin and the doubler passes

through a single narrow band at the edge of the doubler. This same narrow band

follows the contour of finger doublers, as shown in Figure 6. Manufacturing

defects in the bond away from the edges do not impair the load transfer

capability of the bond.

Attention is now focused on the not quite ideal sharing of the load between the

skin and doubler, as indicated above. The integral of the adhesive shear

stress over the extent of both the elastic and plastic regions is

S W

f fT dx + _ d_ = [cosh(Is) - ]] + % w

i sinh(_s) P
0 0

If the skin and doubler were to share the load, at the row of rivets, in

proportion to their respective stiffnesses, the load per unit width in the

doubler (transferred through the adhesive bond) would have to be

(P/ i+ ss

Edt d

which, from equation (51), is precisely equal to

(54)

(55)

_p

I tanh(_s)

+ Y W

P

(56)

A comparison with equation (54) indicates that it is realistic to use the

approximation (55) whenever cosh(_s) >> I which is practically always, because

of the characteristically high values of _.

The analysis above is now capable of re-interpretation in a form providing a

meaningful comparison with the analysis of lap joints. Corresponding to equa-

tion (50), the equivalent analysis of the general double-lap joint yields equa-
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tion (A.55) of Reference I:

Ye

In lap joints it is the extent of this plastic adhesive zone which limits the

ultimate strength that can be attained by the joint. Likewise, for bonded

doublers, it limits the load that can be transferred from the skin to the

doubler without failing the bond. In the latter situation, however, the poten-

tial bond strength usually exceeds by far the strength of the adherends. At

relatively low load intensities, the full plastic capability of the adhesive is

not fully utilized. As the load is increased, a maximum load capacity is

attained which fully extends the adhesive in shear. At this load level, no

increase in the size of the doubler can increase the load transferred. Equa-

tions (54) to (56) and (50) indicate that the load transferred through any bond

of realistic length is equal to

E t -_ w
s s

Edt d

+ .... + i + , (58)
sinh( Is ) Ye

which is proportional to the square root of the strain energy of the adhesive

in shear, just as for bonded lap joints. This explains why ductile adhesives

are so much stronger than brittle ones despite the greater maximum shear stress

of the latter.

For practical stressing of the adhesive in shear, equation (58) contains all

the pertinent information. The design sequence is as follows:

Ests 1
(l) compute the bond load P / i +

Edt d ]

(2) compare (1) with the maximum bond strength

Ye

which is limited by the adhesive shear strain capacity (Ye +Yp) and
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(3)

(4)

if the comparison in (2) indicates that the adhesive is suitable,

determine the minimum width of the doubler, from the row of rivets to

the nearest edge of the fingers on the doubler as at least the sum of

the widths of the plastic and elastic adhesive zones. For this pur-

pose it would appear to be good design practice to base the load on

the ultimate strength of the skin with an adequate margin of safety.

A simple and generally not unduly conservative approach is to assume

that tanh(Xs) = Z for the elastic region, so that s = 3/_, and that

all the load is carried in the plastic region, so that

Then, _minimum = s + w

EXAMPLE 2:

Consider a 0.030 inch 7075-T6 aluminum alloy skin with a 0.020 inch doubler of

the same material, bonded together with Epon 951 adhesive for which z = 6ooo, p

psi, YP/_e = 20, G = 6.o x zO4 psi, and n = o.oo5 inch. For these materials,

x : lo.o

Taking ou/t = 75 ksi for the aluminum (for which also E = 107 psi), the maximum

bond load per inch is 75 x 103 x 30 x 10 -3 / (1.0 + 1.5) = 900 lb/in. The

adhesive bond capability is (6oo0 / zo) x _41 = 3842 lb/in., so the adhesive

has more than adequate strength.

The minimum width of the doubler (see Section A-A in Figure 6) then follows as

3 + 6_o°o = 0.45 inch- i0.0

The fingers can then be proportioned according to current accepted design

practice. The minimum width c above is likely to be so small in general that

manufacturing tolerances and the adherend efficiency considerations above may

well dictate a much greater length.
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3. SELECTIVEREINFORCEMENTBY BONDED-ONDOUBLERS

In the application of advanced composites to aerospace structures in the form

of selective reinforcement, the objective is to minimize the total cost of the

composite by restricting its application to those situations in which it is
used most efficiently. These are the unidirectional reinforcement of beam

caps, strut flanges, stringers and longerons. The key problem in such applic-
ations is any load transfer from the composite to a metal end fitting. The

brittleness of the composite has led to the acceptance of the concept of using

only adhesive bonding between the composite and the end fitting and employiqg
mechanical fasteners between the end fitting and the adjacent structure. The

direct bolting of composite to the structure would necessarily require cross-

plies to develop adequate bearing strength and, with the associated stress
concentrations around the holes, this does not represent a particularly effic-

ient application of advancedcomposites if the bolt holes run along the entire

length of the part. A related concept, which has not received the attention

it merits, is that of a bonded-on unidirectional reinforcement with cross-plies
interleaved at the ends which can then be bolted as well as bonded. The effic-

ient use of interleaved metal reinforcement or boron film reinforcement is

limited to fairly thin sections because of non-uniform load sharing problems
associated with the many rows of bolts needed to transfer load in to and out of

a thick section. Under such constraints, it becomesapparent that reliance on

pure adhesive bonding will continue in such applications.

There are two mathematically distinct types of problems in this classification:

the thin laminates with uniform thickness and the thicker ones with a scarfed

(or stepped) end to effect the load transfer over a greater length. These are
treated below in turn. Becauseof the interest in boron-infiltrated composite-

reinforced structures (Reference 5), the solutions will be presented directly

in terms of section areas per unit bond width rather than in terms of "equi-

valent adherend thicknesses".
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3.1 Uniform Thickness Doublers

Starting with the uniform thickness adherends, the basic problem is that of how

much composite can be bonded on before it splits off. This problem arises as

the result of thermal stresses induced by the dissimilar coefficients of therm-

al expansion for metals and composites and the fact that the operating temper-

ature is almost invariably much less than the bonding (curing) temperature

required for good environmental resistance. Once this limit is set, one can

proceed to compute how much mechanical load can be transferred and how best to

do so. The pertinent variables are depicted in Figure 7, in which the link

supports are meant to indicate the lack of eccentricities and of any deflec-

tions perpendicular to the x-axis. Precise elastic-plastic analysis will show

that, to all intents and purposes, most of the adhesive load is developed in

the end zones of the joint while the bulk of the structure is subjected to

essentially uniform stresses. The distance d shown is independent of the total

length for long overlaps but is characteristic of the cross section and the

materials and the temperature differential AT. The governing equations, for

the sign convention employed in Figure 7, are:

dT 1
= o , (59)

dx P

and

for equilibrium

dT2
--+ w_ : O , (60)
dx P

for continuity

y = (51 - 52) / n ,

while, for the stress-strain relations for the adherend materials

(61)

dSl T 1
--= --+ alAT , (62)

dx EIA 1

and
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d6 2 T2

__= --+ _2£T

dx E2A 2

The governing boundary conditions for the adhesive are that

T=T for 0!xid ,
P

= O for x > d ,

Y = 7p at x : 0 ,

and

¥ : o at x = d

The joint is symmetrical with respect to the centerline at x : L/2.

In the range d ! x ! L/2, there is no differential displacement across the

adhesive layer so that, from equations (62) and (63),

T 1 T2

-- + elAT : -- + _2AT

EIAI E2A2

At the elastic-to-plastic transition at x = d, equilibrium requires that

TI : -T2

The simultaneous solution of equations (68) and (69) leads to the results

T 1 = (a 2 - a I)AT E]AI

(63)

(64)

(65)

(66)

(67)

(68)

(69)

(70)

This same result is deduced for the location x = L/2 by a perfectly elastic

analysis, in association with an exponential increase in adhesive shear stresses

towards the ends of the joint (see Reference 6).

Turning now to the adhesive stresses, equations (59) and (60) require that the

forces T l and T2 be reduced linearly to zero at the free edges of the specimen

by a uniform shear stress over the distance d. It follows that the length of

plastic adhesive zone at each end of the overlap is given by

,(_2 - _I)AT,/( 1 1 )
.... + -- , (71)

wT / \EIA 1 E2A2
P

in which the modulus signs are necessary to ensure that the length d is positive

without prior knowledge of the relative magnitudes of _z and _2- It is now

appropriate to relate this distance d to the shear strain capacity of the
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adhesive, which serves as the failure criterion.

tions (59) through (63),

[ (ly =!(61n - 62) : c +in (_l - _2)nTx+

Atz= o,

while, at z = d,

for the upper bound solution and

for the lower bound solution.

y = C = Ye + Yp

In the end zone, from equa-

+ E2A21 p_ 2 11 (72)

(x : O) (73)

y : O (x = a) (74)

Y = Ye
(x = a) (75)

While the condition (75) is obviously associated with some displacement incom-

patibility for x > d, equation (65) requires that there be no change from the

forces in equation (70) for long and moderate overlaps. For the upper bound

solution, then, equations (71) through (74) indicate that

(Ye + Yp ) = CI[I(_22q - al)ATI] , (76)

whence the failure condition

2T w_(Ye + Yp)( i E2-_2 )p E_-A_ + = [(_2 - _I)AT] 2 (77)

Various dominant influences are apparent in this relation. The thermal stress

terms appear to the second power, so their influence becomes progressively more

severe. With all other variables held constant, the left-hand side indicates

a definite limit in adherend stiffnesses that can be loaded up, without failure

of the adhesive, by a given adhesive and width of bond. The greater is w in

proportion to EIA I and E2A2, the higher the temperature differential that can

be withstood. The important role of adhesive ductility is again evident. The

quantity n_p(ye + yp) represents the strain energy per unit bond area for the

adhesive and this alone characterizes the influence of the adhesive. The same

importance of the adhesive strain energy is evident in Reference l for double-

lap joints. The lower-bound equivalent of equation (77) is
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_TpWqVp(Ei--_i + _)= [ (_2 - _i)aT] 2 (78)

Equations (77) and (78) are appropriate for the AVCO boron-infiltrated extrusion

concept (Reference 5) because the circumferential symmetry prevents the devel-

opment of peel stresses at the ends of the overlap. For the exposed type of

reinforcement illustrated in Figure 7, it is probable that pee] stresses or

associated interlaminar tension stresses impose a more severe restriction than

equations (77) or (78). This kind of problem is discussed in Section 6 of Ref-

erence l and imposes a definite limit on the thickness of doubler which can be

bonded on without having a scarfed end. For a uniform thickness of reinforce-

ment, designated by the subscript o, this thickness is

o 3Ec,LI _ V2)_Tp /

in which _ is the maximum allowable peel or interlaminar tension stress, E '
o c

is the effective modulus in peel, and the other quantities have been defined

above. This constraint does not include any thermal effect terms because it

derives from a purely plastic analysis and need not distinguish between how

much of the adhesive strain was thermally induced and how much was developed

by the applied mechanical loads. Were one to include the elastic stresses also,

one could extend this thickness ever so slightly for very low thermal mismatches

and/or very low temperature differentials.

EXAMPLE 3:

While this example should be regarded as only approximate because it deals with

a very brittle resin system (and the theory above is precise only for reasonably

ductile systems), it may be of interest to examine the permissible size of

boron-epoxy infiltrated rods in aluminum extrusions. One uses equation (77)

with an aluminum area equal to that of the boron-epoxy as a typical example.

The resin has properties of the order of _ = 0.005 inch, Tp 9000 psi,

(Ye + Yp) = 0.1, so that, if the hole in the extrusion be of diameter d and the

temperature differential be 400 °F (from 350 °F to -50 °F),

( )2 x9OOOx _Td xO.O05 x 0.i _ = [(13.0- 2.7) xlO-6 x 400] 2

30 xiO 6 x_d 2 lOx iO 6 x _d 2
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whence d = 0.283 inch.

It is evident that the 0.25 inch diameter selected by AVCO is close to optimum

for the 35o °F cure-in-situ resin system which has been used to date. To

increase this diameter significantly requires either a decrease in the cure

temperature or a layer of ductile adhesive between the boron-epoxy and the

aluminum. AVCO is currently increasing the diameter of the reinforcing rods by

use of a room-temperature-curing resin system which is subsequently post-cured

to improve the strength and environmental resistance. This scheme is effective

for two reasons. First, the thermal stresses are less severe in going from

room temperature to either -67 °F or to the typically 250 °F post-curing temp-

erature than is the case in going from 350 °F to -67 °F. Second, in the room-

temperature-curing system, the stress-free state is at room temperature rather

than at 35o °F. Therefore the residual stresses induced in the aluminum are

far less severe and the fatigue life of the structure is improved. The major

thermal stresses with this scheme occur at 250 °F and, as far as the bond is

concerned, these are not subject to creep because there is no driving force at

room temperature.

The analysis above concludes, in equation (77), with an estimate of the maximum

possible size of composite reinforcement which can be bonded to the basic metal

structure. If mechanical loads T I and/or T2 are applied at the end of the com-

posite, where the maximum induced shear transfer stresses are located, this size

will necessarily be reduced in order to accomodate both components of load. The

understanding of this phenomenon permits of simple design modifications to all-

eviate this difficulty. This is illustrated in Figure 8 in which, in the upper

configuration, both mechanical and thermal loads combine at the same location.

In the lower configuration, on the other hand, the extension of the reinforce-

ment beyond the last fastener and beyond the softening cutout serves to separ-

ate the peaks of the two transfer stress components. As explained in Section 4,

the peak mechanically-induced stresses are located at the last attachment and

decay towards zero at the end of the member. The peak thermally-induced stress-

es necessarily occur at the extremity of the reinforcement. Therefore, the

stress-concentration relief shown in the lower part of Figure 8 enables the

resin matrix to react only one peak load condition at any one location, permit-

ting the application of higher mechanical stresses to the reinforcement.
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3.2 Feathered-Edge Doublers

For applications in which thick reinforcement sections are required, the abrupt

cut-off at the end of the reinforcement is intolerable and the appropriate pro-

cedure is to feather the end, as illustrated in Figure 9. In this event, quite

a different mathematical solution governs and peel stresses (or interlaminar

tension stresses in the composite reinforcement) cease to be a problem. The

design of this latter class of joints is dominated by two or three prime con-

siderations. First, the net extensional stiffness of the metal plus filament-

ary composite parts should be constant throughout the joint, if at all possible,

to promote maximum joint efficiency. Second, the net strengths at each end of

the joint should not be so adversely unbalanced as to leave a long piece of

reinforcement unable to accept any load because the end attachment area is too

weak to load up the middle. Third, because the coefficiencts of thermal expan-

sion of metals are distinctly higher than those of filamentary composites and

because the stress-free temperature (just less than the cure temperature) is

almost invariably higher than the operating temperature, a compressive load is

usually more severe on the bond at each end than is a tensile load.

The notation and sign convention for this type of joint are defined in Figure

9. Again, deflections perpendicular to the axis of the filamentary reinforce-

ment are excluded. Using classical mechanics of continuous structures, the

equilibrium of the differential elements is given by

dT
o

--- = o (80)
dx P

and

dT
m

dx

u+ .T = 0 (81)
P

while the stress-strain relationships for the materials prescribe that

d6 T
c C + AT (82)

C

and
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in which

d_ T

m m (83)_= + _ AT ,
ax (EA) m

m

(m) = E A (xl_) (84)
C oc

and

(EA)
m

= (EmAm)l - [(EmAm)1 - (EmAm)2](x/£) 1
= (EmAm) 1 - A(SmAm)(X/_,)

(85)

while displacement continuity requires that, for the adhesive,

y : (a - am) / n (86)C

The design problem may be expressed in its simplest form as the determination

of the elngth, _, of scarf necessary for a uniform bond stress Tp to transfer

the load. Usually a compressive load is more critical than a tensile load

because the thermally-induced residual bond stresses tend to relieve applied

tensile loads and to aggravate compressive loads. In the process of solving

the equations, it is necessary to check on the maximum adhesive shear strain

induced since this serves as the failure criterion. The adhesive shear strain

is assumed to be zero at the inboard end of the scarf. Even if it is not pre-

cisely so there, it is zero close nearby. The numerically greatest adhesive

shear strain will develop at the outer (feathered) end of the composite, regard-

less of whether the applied load be tensile or compressive. Thus, the solution

proceeds as

- (%-_)AT + --_---- - --_A----- , (87)dx q EcAc (EmAm)1 - [(E )1- (EmAm)2](x/;L)

in which P is the total (tensile) load applied, whence

_I TpW_ Py = const. + (C_c- am)ATx + _x + Zn[(EmAm)1- A(EmAm)(X/_)]

E A A(EA m)o c

- - ] (88)+ P (E A )1 A(EA m) (EAm)I£n[(EAm)I- A(EA m

[h(EmAm) ]2 m m

The substitution of the conditions _ : o at x : _ and y = Ye + YP at x : 0

serves to evaluate the integration constant. A further equation follows from
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the assumed zero differential displacement across the adhesive layer in the

(uniform) central region of the overlap. From equations (82) and (83), with

(_ = (S ,
In C

(¢m)2 (To)2

(ZAm)2 E Ac c

= (a c - am)AT (89)

and, since,

(T)2 = T w_ and (Tm)2 = P - T wC , (90)
c p p

P [l i1= TpW_ -- + -- + (ac
(EmAm)2 EcA c (EmAm)2' - OCm)AT

(91)

Equation (91) permits the load P to be eliminated from the failure criterion

formed with equation (88) applied at each end of the scarf. This process leads

to an expression for _ which may in turn be substituted into equation (9l) to

evaluate the maximum load capacity of the composite-reinforced structure. The

equation for c becomes

A£ 2 + B_ + C = 0 , (92)

where

A= Tw - " i

P A )2c c m m m

(EmAm )2_-n[(EmAm) 2/(EmA m )1].) (93)
(EmAm) I- (EmAm) 2

and

(i (EmAm) 2Cn [ (Em__Am2 2/___(E__mAm)i ] ) (94)
B : (_c - am)AT + (EmAm) 1 _ (EmAm) 2 ' '

C = q[Y(x=O) - Y(x=_) ] = ±n(Ye + Yp) for the upper bound 1 (95)

= ±n_p for the lower bound I

The apparent problem of evaluating _n(O) for the case (EmAm) 2 = 0 does not in

fact arise because

O_n(0) = Cn(O 0) = _n(1) = 0 . (96)

Strictly this limiting case of a pure scarf joint is not covered by the present

analysis because the thermal stress picture can change to the extent that y # o

atx=_.
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The reason for the _+sign in equation (95) is explained in Figure I0. The

mathematical confirmation of the precise adhesive shear behavior depicted in

Figure 10 can be established by the following reasoning. Equation (87) may be

re-arranged by means of equation (89) to read

d_" i i {P[(EmAm)I- (EmAm)2] - _pW_(EmAm)l}(l-_)

It is clearly evident that dy/dx = O only at and beyond x = c, except for the

particular positive value of P, for each joint, for which ay/ax --o at all

values of x. At x = o,

inIP[(EmAm)l - (EmAm)2] _ T w_L(E A )1 1

----__ _ m m

(E#m)l (E#)2

= (c_c - C_m)AT + --- _

F,Ac c

cl'y

d.x

(97)

(98)

(99)

and dylclxlo will tend to be positive as the result of usual thermal mismatches

and compressive loads, so that Yo will be negative while, for large tensile

loads P, ay/dxl0 will tend to be negative and _0 positive.

Returning now to equations (82) through (85) it is evident that A = O for

E A = A(EmA m) which promotes longer effective scarfs as the result of carefullyc c

matching extensional stiffnesses along the length of the joint. (It is estab-

lished in Reference 3 that only the unbalanced varieties of scarf joints suffer

from limitations in joint efficiency.) In other words, it is sound design

practice to make

(EmAm) I = (E#m)2 + EoAo (100)

The evaluation of the optimum length _ for a design governed by compressive

loads is straightforward. The length _ is determined from equations (60)

through (63) by reversing the sign of (e - _ )AT and using the positive sign
o m

for y in equation (95). Actually, all the other quantities change sign except

for the thermal terms, but it is simpler to compensate in this manner. The

load capacity then follows from equation (91), again with the sign of the

thermal stress terms reversed. The case of tensile loading is a little more

tricky. The blind use of equations (82) through (85) with positive values of P

32



could easily result in a joint design which will hold its load only if applied

gradually during cooling down in the autoclave after bonding. Once the load

were released, the thermally-induced stresses could cause failure of the

structure. In other words, for tensile loads it is necessary to check also the

no-load condition to ensure that it is not more severe on the adhesive than is

the load condition itself. For tensile loads, the appropriate sign in equation

(85) follows from equation (99). If d_/dxlo is positive, _o is negative, and

vice versa. The shear stress Yo is usually negative for zero mechanical load.

In the design of composite-reinforced structures it is necessary to guard

against discontinuity problems in the transverse direction also. It is point-

less to carefully taper the ends in the primary load direction and leave a

severe thickness discontinuity in the orthogonal direction. An interesting

discussion of this problem and its solution is given in Reference 7.

The analyses above do not lend themselves to ready graphical representation

because of the large number of variables involved. It is appropriate to demon-

strate the conclusions and the use of the analysis by simple numerical examples.

Consider, in turn, balanced and unbalanced joints to show the adverse effects

of poor detailing and thin and thick sections to demonstrate how thick sections

tend to exceed the predicted bond load capacity. Since the boron-epoxy to

aluminum combination is receiving attention for selectively-reinforced struct-

ures the examples discussed will be so oriented.

EXAMPLE 4:

For a bonded composite-reinforced metal structure of the type illustrated in

Figure I0, let tc = 0.i00 in., (tm) 2 = 0.060 in., (tm) I = 0.360 in., w = 1.0

in., E = lOxlO 6 psi, E = 30x106 psi, a = 13.0xlO -6 /°F, _ = 2.7x10 -6 /°F,
m C m C

AT = - 50 - 350 = -400 °F, _ = 6000 psi, n = 0.005 in., and (¥e + ¥p) = 2.0.P
Then, from equations (92) through (95),

A = 0, B = (2.7 - 13.0)x10-6x(-400)[1 + _n ] = 0.002645, C = 0.005x2.0 = 0.01

whence, for compressive loading, _ = -C/(-B) = 3.780 in.. From equation (91),
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i i ) ]p = lOxlO6xO.06 6000x3.780x • L + _(2.7_13.0)xlO-6x(_400)

\30×106x0.1 tOxlO6xO.06

= 27,218 - 2,472 = 24,747 Ib/inch width in compression and P = 27,218 + 2,472

= 29,691 Ib/inch width in tension.

These loads correspond to composite stresses of 226,800 psi in both load senses.

As the maximum allowable adhesive shear strain is reduced, the theory above

predicts a progressive decrease in joint load capacity. The theory is conserv-

ative with respect to brittle adhesives because of the somewhat surprising

behavior of perfectly elastic scarf joints subject to thermal mismatch between

the adherends. It is established in Reference 3 that, for both very short and

very long overlaps (but not those in between) adherend thermal mismatch does

not prevent the design of a scarf joint to transfer a required load between

specified adherends. The dominant adverse effect is any stiffness mismatch

which may exist between the adherends at each end of the joint. In the present

context this scarf joint behavior translates into a statement that, provided

the total extensional stiffness remains uniform throughout the joint region, a

sufficiently small scarf angle can always be found to enable any adhesive, no

matter how weak or brittle, to effect an adequate load transfer. The prime

drawbacks to reliance on this idea are that, in the first place, the scarf may

need to be so long that there is no room in the structure for a constant section

between the joints at each end and that, secondly, the elastic analysis to

determine such a scarf length is necessarily extremely difficult, being even

more complicated than for a scarf joint (Reference 3).

Example 5:

Suppose that all data are the same as for Example 4 with the single exception

of the presence of adherend stiffness imbalance with (tm) 1 = o.16o in., so that

there is no bend in the reinforcement. The metal end of the joint is not built

up adequately to carry the load which the filamentary composite reinforcement

could otherwise develop.

From equations(92) through(95) now

A = 6000 - + 0.6_n 0.6 = _ 0.001646
30x106x0.1 10xl_x0.1
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o.6
B = (2.7- 13.o)×io-_×(-_oo)×i + o.6_(_-_]

c = o.o05 2.o = o.oz

Then, for compression

0.001695 - v/(0.001695)2 + 4(0.001646 (0.01)

=

-2 x (0.001646)

= 0.001695

= 2.003 in..

The associated load capacity then follows from equation (59) as

I <o3 ) 1P = lOx106xO.06× 60o0x2.oo3 + - ' - (2.7-13.0)xlO-6x(-40o ,
xO.1 lOxlO6xO.06

= 14,421 - 2,472 = 11,950 lb/in, for compression,

= 14,421 + 2,472 = 16,89L Ib/in. for tension.

These values are only about half those predicted for the stiffness-balanced

joint examined in Example 4. This comparison serves to emphasize the

importance of careful design detailing to ensure maximum joint efficiency by

minimizing any imbalances which'may be necessary.

EXAMPLE 6:

Consider a joint of the same materials as in Example 4 but with the adherends

four times as thick. The plastic scarf length remains unaltered at 3.780

inches and the composite stress consequently drops to 56,700 psi. The load

capacity increases to

[ /P = lOxlOGxO.24 6000x3.780

\30xlO6xO.4

= 68,040 - 9,888 = 58,152 lb/in, for compression,

= 68,040 + 9,888 = 77,928 lb/in, for tension,

but the adherend materials are being used much less efficiently.

I ) I+ - (2.7- 13.0)xlO-6x(-400) ,
lOxlO6xO.24

(Actual ly,

as discussed in Example 4, greater reliance should be placed upon the elastic

capacity of the bond in a scarf joint, so this inefficiency prediction for

thick sections is somewhat conservative.)
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4. BONDED METAL REINFORCEMENT AROUND BOLT HOLES IN COMPOSITES

The application of bolted joints in advanced composite structures depends upon

several factors. On an individual basis, load transfer by bolts in plain holes

in isotropic pattern filamentary composites (0°/45°/90°/-45 °) can be quite

efficient. On a specific weight basis there is a strong case for not reinforc-

ing the laminate with metal but for building up the laminate thickness as nec-

essary instead. However, while this usually gives the lightest (and frequently

the least expensive) bolted joint, it may be excessively bulky. There remains

a case for analyzing bonded metal reinforcements around the bolt hole(s) for

applications in which space does not permit a thicker laminate to be used.

There are two possible locations for such doublers: within the laminate or

externally. The two schemes are depicted in Figure II. The internal doubler

has twice the effective bond area of the external doubler but, in practice, is

found to be associated with joggled fibers and poor quality laminates. External

doublers are generally to be preferred because of the higher quality laminates

and superior fit over the area to be bonded. The feathered edge shown in Figure

II is reserved for thick doublers. The thickness beyond which uniform doublers

cannot be employed effectively is determined by peel-stress considerations

explained in Reference 1 [see also Equation (79) here].

The analysis of external bonded doublers begins with a demonstration that, for

uniform thickness doublers, the optimum location of the bolt hole is in the

middle of the doubler. The nomenclature and mathematical model are defined in

Figure 12. Equilibrium of differential elements in each of the four areas

requires that, for one side of the joint,

dT i dT 2
--+% = 0 , --- "_ = 0 _ "I
dx P dx P

dT3 dT 4
--+ _ = 0 , and --- • = 0
dx P dx P

(lOl)

The thermo-elastic material equations are
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d6k Tk

--. + akAT

dx Ekt k

(k = 1,2,3,4)

while the adhesive shear strains are given by

(I02)

62 - 61 64 - 63

Y12 = and Y34 = • (103)

D

The boundary conditions apply largely to aT/dx. For the assumed fully-plastic

adhesive stress state, with reference to Figure 12,

k = e/_ (104)

The critical strain developed in the adhesive occurs at the location x = _,

while the adhesive is stress-free at x = o. The solution proceeds along the

path

and

dYl 2 I12 T 2 2 T 1 ]
..... + (a. -_ )AT ,

dx r,[Eit i Eo to _ o

- + -- _p P
dx 2 E t G

O O

dY3 4 i I_ T4 2 T 3 . _ ]--= -- __+ (_. - _o)AT
dx _ .+ E t l

1 1 O O

(IOS)

(I06)

(I07)

+ Tp p• E t G
1 1 0 0

The solutions of these differential equations are

(I08)

12T_

Y12 = AI2 + Bi2x + _____ 2 (109)

2G

and

%2Tp
Y34 = A34 + B34(x - e) + --(x - e) 2

2G

(llO)

The application of the boundary conditions to equations (I05), (I07), (I09) and

(ll0) needs the evaluation of the adherend stresses due to thermal mismatch.
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It is assumed that the overlap is sufficient to induce the maximum stresses,

given by equation (70).

)AT + at (111)
o i z o _ _ E.t.

O O i i

The adhesive shear strain at x = o will, by inspection, be zero for the maximum

load case, being usually negative due to thermal stresses prior to application

of load. The various boundary conditions are

Al2 = 0 (from 712 at x = 0), (112)

B]2 : (_. - _ )AT/n (from d712/d_x at x : 0), (113)
i o

BI2 + --e = 1 + -- _ + + + --
E t t E.t n_\ E t

G n o o i i o o i i ' i i oo

B34 =

(from dY12/dx at x = e), (114)

A3 4 = A1 2 + Bl2e + (12% /2G)e 2
P

(from Y12 = 734 at x = e)_ (ll5)

i O + -- -- .- __+ + __+ __ --

n E t E.t t E.t .t E t nEt
oo zi oo zi zi oo oo

(from dY34/dx at x = e), (116)

B34 +-

12%p (_.-_ )AT 2P
(£ - e) = 1 o + -- (from dY34/_ at x = _), (117)

O n nE.t.
ii

and

(ye47p) = A34 + B34(9_-e) + (12Tp/2G)(£-e) 2 (from 734 at x = _). (118)

Elimination of A34 and B34 by means of equations (III) through (117) leads to

the following expression for the load carried:

n(Ye+YP) - (_i- _ )AT£
P : • _ = o (119)

I
The load is seen to be greatest when

e = _/2 (120)

Therefore, for efficient design, the bolt (row) should be located in the middle

of the doubler. The adhesive shear strain at the middle of the doubler then

follows from equations (83) and (88) as
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y = A34 =

(_i - ao

q

- + _ - _. , (121)
2 8 \E t E.t.

O0 ii

which is precisely half that at the critical end (x = _) in the event that the

doublers are balanced with respect to the basic adherend. That is E t = E.t..
O0 ii

While the stiffness ratio (E.t.)/(E t ) has no effect on the total load trans-
1 1 0 0

ferred, it can be shown that the adhesive shear strain gradients are minimized

when E.t. = E t . In this event, and with the bolt in the middle of the doub-
ll O0

ler, dyz2/dx equals dY34/clx at x = 4/2. Equation (119) seems to suggest that

P decreases as c increases. Actually, however, L is not really a variable

since the length of overlap is determined by the conditions that, at Pult'

Y34 = (Ye + YP) at x = _ and Y12 = o at x = o. Re-arrangement of equation (ll9)

leads to the following expression for

Tp 42 + (C_ -- C_ )AT ]t - q(Ye + Yp) = 0 (122)E.t. i o
1 1

whence

4TpT](ye + yp)-(a. - a )AT + [(a - _ )AT]2 +
l o i o E.t.

= z i (123)

and, for each side of the joint,

(2T /E.t. )

4Tpn(y e + yp)(_ -_ )AT]2 + - (_. -_ )_T
i o E.t. z o

Pult = T £ = I I (124)
P 2/E.t.

1 I

Strictly, this same load Pultimate given by equation (124) applies for any

overlap _ £ given by equation (123). The reason is the negligible load trans-

ferred by the elastic adhesive in the additional parts of the overlap. In

determining _ from equation (123), care must be taken to ensure that the maximum

positive and negative loads are inserted in turn. If no reverse load is ever to

be applied, the appropriate other limit is zero load to protect against a
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possible design which would hold together as long as the load was maintained,

but split apart as soon as it was unloaded.

EXAMPLE 7:

To illustrate the application of the formulas above, consider a graphite-epoxy

composite laminate I.o inch wide and 16 plies thick of the (0o/45o/0o/-45 ° )

pseudo-isotropic pattern. This is to be loaded up through bonded titanium

doublers and a single bolt in double-shear. The composite adherend strength

outside the joint area is zo3,ooo × 1.o x z6 x o.o055 = 9,o64 lb. A suitable

bolt to carry this load in double shear is a 5/16 inch diameter AN or NAS bolt

heat-treated to 125 ksi. The net section strength of the laminate through the

bolt hole is adequate for the half-load carried there. There is no need to

consider the use of a smaller bolt of higher heat-treatment. Some of the bolt

load will be transferred to the composite by direct bearing on the bolt but,

because the modulus of the laminate is only about half that of the titanium,

it is only slightly conservative to assume that all the bolt bearing takes

place on the titanium. With a yield bearing stress of 216 ksi at e/d = 2 for

annealed 6A_-4V titanium, each doubler needs a minimum thickness of 0.067 inch

for the 5/16 inch bolt. Then, with a ductile adhesive, for which _p = 6000

psi, n(y e + yp) = O.OLO inch, _._ = o, _o = 5.8 × IO-G/°F, Ei = 11.9 x 106 psi,

t. = 0.088 inch, AT = -50 -350 = -4OO °F, the maximum load that can be carried
l

is evaluated by means of equation (124) as Pult = 6,804 Ib which, when doubled

to account for the duplicated bond area, is adequate for the load required.

The design minimum overlap is evaluated by means of equation (123) as c = 1.13

inch and is 50 per cent more than the theoretical minimum for a perfect bond.

This, then is a satisfactory design with a margin for environmental deterior-

ation. A suitable actual overlap is 1.375 inch to allow adequate tolerances.

Had the computed margin of potential bond strength to actual laminate strength

(outside the joint) been less than 50 per cent, or even negative, it would have

been necessary to increase the extensional stiffness of the composite locally

by adding o° plies. It should be noted that the bond strength increase goes up

slightly less rapidly than Ev_T. Also, it can be seen from equation (124) that,

for thick laminates and brittle adhesives, there is a distinct possibility that

the doublers will split off. In this case, checking equation (83) of Reference

1 for peel stresses shows them not to be a problem. Assuming one bond-line
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thickness of adherend affected by the peel stresses,

(80001416 x i06 x 0.005( 1 1

°max \6-_00! x . \'0.5x 106 I.7 x i06

+

while the actual value of t is o.o67 inch.
o

xl)- = o.245 inch
16 106
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5. IN-PLANE SHEAR TRANSFER THROUGH BONDED JOINTS

The direct transfer of in-plane shear loads from one member to another is

covered by the analyses in References 1 and 3. In essence, the governing

equations are the same as for direct loads except that the adherend stiffnesses

Et are replaced by the appropriate Gt. The thermal stress picture is more

complicated, being a negligible problem except at the two diagonally opposite

corners of the bond area because, elsewhere the thermally-induced adhesive

shear strains are orthogonal with respect to those caused by mechanical loads.

This situation is depicted in Figure 13. An effective simple technique for

dealing with thermal stresses under in-plane shear loading is to use a

modified form of equation (77) to compute the residual bond strain as

/I l + ) (125)Yr : [(a2 - _i) AT]2 2%pw_ EIAI

and subtracting this from the total adhesive shear strain otherwise available

for reacting the mechanical loads.

The analysis of a single load path for in-plane shear is straightforward, but

that for multiple load paths, as at the intersection of two cells of a multi-

cell torsion box is more complicated. An illustrative example of such problems,

below, serves to describe the technique to be employed in such cases. Thermal

stress considerations have been omitted because, in practice, such structures

are usually made of a single material throughout.

The mathematical model of the structure to be analyzed is defined in Figure 14.

The governing equations, for the sign convention adopted, are as follows:

dS I d_1 $I

--+ _ = 0 , - , (126)
dx dx Olt I

dS 2 d62 S2
__ _ (127)

---'[ = 0 ,

dx dx G2t 2

dS 3 d6 3 $3
__ _ (128)

--+ T = 0 ,

dy dy O3t 3
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dS4 d_ 4 S 4

dy dy G4t4

dS5 d85 $5

dy dy G5t 5

dS6 d66 $6

--- T = 0 , -'7------

dxl dx I G6t 6

dS7 d67 $7

_+ T = 0 , --=

dx I dx I GTt 7

62 - 61 64 - 63 $4 - 65 66 - _7

(]29)

(13o)

(131)

(132)

YI2- , Y34 = , Y45 = , Y67 = (133)

_T
P

It follows that

dyi___2 = S 2 S 1 d2y12 mp

dx rl'G 2 G1tl/ dx2 ]'G_tl + : %"G2t2 ) G P

dY34 $4 $3 d2y34 Tp +

dY45 i( S 4

dy n G4t 4
2 1 ) (X45) 2S 5 ) d2y45 Tp + _ T

G5t 5 dy 2 ]\G 4 G5t5 G P

_1 q G6t6 G7t 7 dXl 2 n \G_t 6 G_t 7" G Tp ,

The solutions of these differential equations are

(%12)2Tpx 2
YI2 = AI2 + BI2X +

2G

Y34 = A34 + B34y +
(X34)2Tpy 2

2G

(145)2TP y2

2G

Y45 = A45 + B45Y +

(134)

(135)

(136)

(137)

(138)

(139)

(140)
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Y67 = A67 + B67Xl +
(_67)2%P 2

'x 1
2G

(141)

in which x and x I differ only in origin. Most of the boundary conditions are

applied by means of the first of each of the equation sets (134) through (137).

Thus

SI

BI2 = -- , at x = o , (142)

qGltl

B12 + (_12)2_I°£12 = ....i[ Tp£12 - (Sl - Tp£12)

G n [G 2t 2 Gltl

, at x = _12 , (143)

%p£12 Tp£34

B34 : _ ---- ,

qG3t3 qG3t3

at y = 0 , (144)

B34 +

(_34)2_p $4

£34 -

G qG4t 4

at y = _34 , (145)

B45 = _
TpZ45 Tp£67

qG5t5 nG5t5

at y : o , (146)

B45 +

(X45)2T $4

PZ45 = --

G qG4t4

at y = _45 , (147)

]367 = _ ,

O7t7 G6t6

(148)

_[($7 + TP £67) TP C45]
G7t7 O6t6

at xI = 0 , (x = _12) (149)

(X67)2T S 7

B67 + P£67 = - at x I = c67

O qG7t 7

, (x = gl2 + c67) (150)

In these equations, £12, £34, _45 and _67 refer to the effective fully-plastic

zones out of the total overlaps, which may be greater but do not contribute to

extra load transfer. Since the angles tying the skin and web together may also

serve as concentrated spar caps, none of the frequently possible reductions in

variables is effected here. Nevertheless, since the outer legs of the angles

are stress free, it follows quite generally that
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_12 = _34 and _4s = _67 •

Gross equilibrium also requires that

(_12 + _67) = (sl - sT)/_p

while, also,

(_34 + _45) = S4/Tp

Now, from equations (144) through (147),

)TP[ i l

so that, quite generally,

(IBl)

= S4/Tp (152)

(153)

(154)

S! - S 7 $4

_12 C34 _45 _67 _effective (155)
2_ 2T

P P

In other words, each bond transfers precisely the same load as the other three.

One of these four extents of overlaps becomes critical first, depending on the

relative adherend stiffnesses. The maximum possible extent of plastic adhesive

zone occurs when the shear strain is zero in the middle (strictly Ye to

identify between upper and lower bounds) and at its maximum value (Ye + Yp) at

each extreme of the overlap. However, this is likely to occur only for the

central web if G3t3 = Gst 5 = G4t4/2. In general, one side of the overlap will

be more critical than the other and the extent of effective overlap less. The

derivation of the critical overlap follows from the scheme outlined in Figure

15. Quite generally, the effective overlap is

where

and, here,

clx dx

(157)

A = (_aB)2%p/2G and YB : (Ye + Yp) " (158)
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Note that the minus sign in equation (156) automatically takes care of the

possibilities that the gradients have the same or opposite signs.

For the load transfer from element 1 to element 2,

_p_eff I(sl - TP_eff)l

dT_/dx_ G2t 2 Glt I = - i[ - TPle-ff(l+--Gltl)l
S 1 \ G2t 2

(159)

or, if this ratio is numerically greater than unity, its inverse. Likewise,

between elements 3 and 4,

dy /dy

and, from 4 to 5,

(or its inverse) (160)

_y_/dy ff

while, from 6 to 7,

(or its inverse) (161)

dy_/dx

-\ _C I - o7t7

or its inverse, depending upon magnitude.

(162)

In applying equation (156), it must

be remembered that A is different for each zone because of the different values

of (_ _)2 Thus, the identification of the minimum effective overlap reduces

to the problem of evaluating the least value of

I _ J12G ( Gltl/} I
_/2n(Ve+_ ) 2 - .z+ u2t2fJ (163)

Gltl _2
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2q(Ye+ Yp)Z34 = T
p

/G3t3_

(164)

9,,67

_/2q(y e+Tp)_45 = _-
P

= _ 2n(YeTp+ Yp)

l m

G5t5

1

+

G7t7

(165)

(166)

since

T E

pZeff

s4 - sT)

2 2
(167)

Once the minimum value of _effective has been established in terms of the

adherend properties and load ratios and the adhesive properties, the actual

adhesive and adherend loads at failure are proportional to

s 4 = 2_ ) (168)p(£effective minimum

It can be shown easily that, to maximize the total load capacity of the bond,

it is necessary that the overlapping adherends be as stiff as practical, even

if this means a thicker member reduced in thickness away from the joint. This

problem is too complex to lead to such specific recommendations that the adher-

end stiffnesses should be balanced, except for the 3-4-5 elements for which,

if the bond limits the total load capacity, maximum efficiency requires that

G3t 3 = G5t 5 = G4t4/2 (169)

The actual use of this analysis is illustrated in the following example.

The analysis above is based on a hypothetical perfectly-plastic adhesive.

Effectively, for real adhesives also, the plastic portion of the stress-strain

curve contributes to most of the load transfer and it is only slightly conserv-

ative to neglect the elastic load transfer in comparison. On the other hand,
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it is important, in sizing the overlaps, to add to the computed plastic zones

a sufficient distance for the elastic stress to build up from zero to the

plastic value. Typically this distance is of the order of 3/_ so that, if

dy/dx has the same sign at each end of an overlap, a distance equal to 6/_

should be added to the sum of the two plastic zones.

EXAMPLE 8:

Consider the structure and load ratios shown in Figure 16. Use the notation

of Figure 14 with adhesive properties T = 6000 psi Ye = o.1, yp 2.0, and' p '

n = 0.005 inch. Assume a 2024-T3 aluminum structure for the skins, web and

angles, so that G = 4.Ox10 G psi and F = 40 ksi.
su

overlap is the least of

_12 = •

i '_'xI0 b x 0.125

(i- o._)iI+ o.i25it
2 \ o.o--J_-6_lI

i )+ 4xlOGx 0.25

_34 = _45 = 3.742x

Then the maximum effective

= i.350 inch ,

I i + 2 x O. 063

0.125 1

./i --+--+--F = 1.33i inch

_67 = 3.742x i

I

l o2 )i
= 0.598 inch

Thus the skin-to-angle bond governs the load capacity and (_effective)minimum

is equal to o.598 inch. In turn, it follows that

S4 = 2 x 0.598 x 6000 = 7,176 Ib/inch ,

Si = 2 × S4 = i4,352 I b/inch ,

s 7 = $4 = 7,176 Ib/inch

The corresponding shear stresses in the skin and web are at a uniform value of

T = 7,i76 x i6 = i14,8i6 psi

which is beyond the allowable F
su'

recommended value of _ then becomes

so the adherend strengths govern. The
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40_000 x 0.063 x 1.5 + 3
_67 = 2 x 6000 i--_+ 0.25 = 0.315 + 0.671 + 0.25 = 1.236 inch

for the 6 to 7 overlap, with the 1.5 factor being the design margin of

potential bond strength over adherend strength, 3/_ the single elastic shear

stress build-up zone, and the o.25 the manufacturing tolerance. In the 1 to 2

and 3 to 4 (or 4 to 5) zones, the recommended overlaps are, respectively,

_12 = 0.315 + 6/112 + 0.25 = 0.315 + 1.732 + 0.25 = 2.297 inch ,

c34 = c45 = 0.315 + 6/184 + 0.25 = 0.315 + 1.225 + 0.25 = 1.790 inch

Note that, even though the low-stress elastic troughs make up a large portion

of the total overlaps, they contribute but little to the static joint strength.

Their major important role is to attain a long service life by providing an

area of inevitably small adhesive strain to resist creep and to serve as the

plastic zone late in the life of the joint when the outer edges of the original

plastic zones have deteriorated through environmental exposure.

5O



6. PEELSTRESSRELIEFFORDOUBLE-LAPJOINTS

(TAPERED-LAPJOINTS)

Reference 1 suggests certain simple design modifications to extend the thick-

ness range over which double-lap joints can develop adequate efficiencies.

Basically, the usual strength limit is due to excessive peel stresses which

develop at the ends of the outer adherends at a load level which may be signif-

icantly less than either the potential shear strength of the bond or the adher-

end ultimate strength. Beyonda certain adherend thickness, for a given comb-

ination of materials, the joint efficiency drops to intolerably low levels.

The object of this section is to explain how to effect a major relief of the

peel stress problem, thereby extending the economyin fabrication of uniform

lap joints to a greater usable range of thicknesses. The design technique

employed is that of tapering the ends of the outer adherends, as shownin

Figure 17. Actually, the joint is slightly stronger if the thickness at the

end is not quite reduced to zero. A tip approximately 0.010 inch thick is both

easier to fabricate and handle without damage. This tip must be minimized to

prevent the build up of peel stresses. The analysis below, for a completely

feathered end of the overlap, is slightly conservative with regard to the ult-

imate bond strength but is only slightly so and effectively eliminates one

variable from the analysis/design process.

A general analysis prepared for this problem proved to be so complicated as to
be beyondalgebraic manipulation without assistance from a digital computer.

Therefore, what follows is a simpler procedure governing the approximate design

of optimum proportions for static ultimate load only. Partial load conditions

are not covered by this simplified design procedure but this is considered to

be acceptable because such load conditions do not govern the geometry of the

design. A slightly conservative analysis for the tapered-lap joints at any

load level can be provided by ignoring the taper and using adhesive shear

analysis for uniform lap joints. This particular analysis had been approached

with a willingness to sacrifice some of the unrealized bond shear strength

potential in order to develop the remainder. It transpired that it was quite

simple to attain the entire potential bond shear strength while eliminating the
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peel-stress problem completely. Indeed, by skillful design, it is possible to

exceed by 24 per cent the shear strength potential of uniform double-lap joints

by making each of the tapered outer adherends 33 per cent stiffer than one half
of the uniform inner adherend.

The mathematical model for the analysis is illustrated in Figure 17 along with

the element forces and displacements. Thermal mismatch effects are excluded to
elucidate the dominant influences. The small load transfer throughout the

elastic trough is ignored and an analysis for a perfectly-plastic adhesive is
conducted. At ultimate load the optimum design will maximize the sumof c and

u

_t' the extents of the adhesive plastic zones in the uniform and tapered zones,

respectively. The analyses of the zones A-B, B-C and C-D in Figure 17 must be

performed separately and the solutions joined by matching boundary conditions.

The location of C is defined to occur at the start of the taper on the outer

adherends and the length _t is treated as an unknown to satisfy this condition.

(This considerable simplification in analysis eliminates the matching of cond-

itions at one more transition in behavior and is one reason why the analysis is

inapplicable to partial load levels. Once designed for ultimate load, the

start of the taper remains fixed but the width of the plastic adhesive zone

varies with load level. A further reason is that the length _t would change

with load direction in the presence of any adherend thermal mismatch.)

Throughout the region A-B, the adhesive shear stress is constant at Tp while

the adhesive shear strain _ varies, reducing to zero at B because the adherend

strains are identical throughout the region B-C. (The same is true in the pre-

sence of any adherend thermal mismatch and ensures that dy/dx z O at each end

of the zone B-C). Because of the identical uniform adherend strain assumed in

the zone B-C for all adherends, it is necessary that

whence

2Tp_t 2Tp_u

Et E.t.
O O i i

(170)

E.t.
i ! _ u (171)

E t _to O

(Were precise allowance to be made for the elastic adhesive shear transfer in

the region B-C, equation (171) would still apply at that single location for
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which ayldx = o ). Throughout the zone A-B,

dT dT.

+ 2T = 0 , _____i_ 2T = 0

dx P dx P

(177)

where T represents the force per unit width in both of the outer adherends.
o

The adherend displacements are given by

d6 T d_. T.
0 0 i i

dx E t dx E.t.
0 0 1 1

while the adhesive shear strain is defined by

(173)

y = (6C - 6o) I n (174)

It follows that

To = P - 2WpX

where P is the applied load, so that

T i = 2_pX ,
(175)

1 I 0 0

(176)

whence

Y = YO ---
X+ --+ --

nEot ° n E.t. E t1 1 0 0

Yo being the adhesive shear strain at x = o.

(177)

Since _ is defined to be such
u

that _,= o (or y = Ye for a lower-bound solution),

_ u+ --+- £u 2 = 0

Ye qYeEoto qye Eit i E to 0

At maximum possible load capacity, Yo = Ye + YP" In the zone C-D, equations

(172) and (174) still hold, but equations (173) and (175) become

(178)

d6 T T d6. T.
o 0 o 1 1

dx E t E t _ _-(_l£t ) dx E.t.0 0 0 0 1 1

T O = 2Tp_ , T.z = P - 2Tp_

(179)

(18o)

Hence
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I 2_p_ P 1
d_ _ __dY= _i2Tp_t_ + (181)

d_ dx _[E t E.t. E.t.
O O 1 1 I l

Using the condition y = v_ at _ = o, this equation may be integrated to read

 CIIy = _ + ---_ - --+ (182)
q[E t E.t. E.t. _J]

0 0 1 1 1 1

and, with the condition y = 0 at _ = _t' this becomes

i 14Tp_tLt 4Tp(_u + Ct)_t 2TpCtLtl+ + ---- = 0 (183)

Ye nYeL" EJo 0 E.t.l l E.t.l i J

For the most efficient design, y_ will reach (ye+yp) at the same load level as

that at which Yo does the same at the other end of the joint. This ensures the

maximumization of the sum (Cu+ Lt). The matching of Yo and y& requires that

2&tCt _ 4(C + _t)Zu ( 2 2__]
4_t_t 4(_u + _t)_t + u + + _ L (184)

E t E.t. E.t. E t E.t. E t / u u
0 0 i 1 l l 0 0 i I 0 0

The inclusion of the constraint (171) reduces the number of variables so that

It is easily shown that the solution of this cubic is

_t E.t.
_ z z = 1.3247 (186)

E t
U O O

That is, the net extensional stiffness of the outer adherends should exceed

that of the inner adherend by 32.5 per cent in an optimally designed tapered-

lap joint. It seems to be significant that current metal practice in bolted

joints of similar configuration calls for each of the (tapered) outer adherends

to be between 25 and 40 per cent thicker than half of the (uniform) inner

adherend.

Because of this stiffness mismatch, the adhesive plastic zone A-B extends

further than would be the case if E t = E.t.. For uniform thickness outer
0 0 I 1

adherends with E t > E.t., the end D would be critical, with reserve capacity
0 0 i I

at end A. Returning to equation (178), and incorporating equations (171) and
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(186) for the optimized design, it can be shown that

Hen ce

_Ye" nYeEiti

( u)2 - _.
x i. 3247

I 2 (Yp/Y e)
= 1.06761-

u _(_Tp)/(qYeEiti)

and is 1.o7 times as great as would be the case if £ t = E.t. for a given
O O I i

inner adherend to be bonded. The effect of optimizing the design for peel-

stress relief is, consequently, to increase the potential shear strength to

(187)

(188)

Poptimum 1.0676 x (i+ 1.3247_= _ 7rbalanced
(189)

which is 24.09 per cent better than the best that could have been achieved

with uniformly thick adherends.

It seems remarkable that this relatively inexpensive peel-stress relief modif-

ication should be associated with such a significant increase in potential

bond shear strength. This simple design/fabrication modification permits the

more economical lap joints to be employed effectively throughout a significant

range of thicknesses which would otherwise have required the use of more

expensive scarf or stepped-lap joints. The influence on joint strength of this

concept is depicted in Figure 18 for HTS graphite-epoxy. The tapered-lap

joints without the extra build-up on the outer adherends are found to have the

same potential shear strength as for uniform outer adherends. The end A is

more critical than the end D (Figure 17) because both the peel and shear stress

concentrations are relieved by tapering. That tapering the outer adherends in

accordance with Figure 17 has no effect on the shear transfer when E.t. = E t
1 1 O O

follows from equation (171).
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7. CONCLUSION

This report shows how to apply the simple concept of shear load transfer

through definable fully-effective zones to adhesive-bonded joints of non-
standard configuration which occur frequently in aerospace practice. The tech-

niques have been illustrated through a variety of examples which are by no
meansthe limit of applicability of the method. Actually, because the solution

of the governing differential equations is far simpler for the all-plastic
adhesive than for the perfectly-elastic adhesive, the use of upper and lower

bound plastic solutions expands greatly the range of preblems for which closed-

form analytical solutions can be derived.

The adoption of this plastic zone approach offers a distinct advantage over the
older method of computing bond strength as the product of a uniform allowable
shear stress and the total bond area. The fact that most of the load is trans-

ferred through the plastic adhesive zones has been established by more precise

elastic-plastic analyses (References 1 and 2). Likewise, it was shownthat the
extent of such plastic zones is independent of the total (long) overlap.

Therefore, the use of the plastic zone analysis technique correctly relates the

potential bond shear strength to the appropriate elastic and geometric para-

meters instead of to the total overlap area, of which precise analyses have

shownthe maximumbond strength between given adherends to be independent.
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TYPICAL CROSS-SECTION
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FIGURE 9. NOTATION AND MATHEMATICAL MODEL FOR ANALYSIS OF
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FIGURE II. INTERNAL AND EXTERNAL BONDED METAL DOUBLERS
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(NOTE THAT ENTIRE BEARING LOAD IS ASSUMED TO BE REACTED ON METAL
DOUBLER(S) BECAUSE OF HIGHER MATERIAL STIFFNESS THAN FOR COMPOSITE).

LOAD DISTRIBUTION

FIGURE 12. NOTATION AND MATHEMATICAL MODEL FOR ANALYSIS OF BONDED
METAL DOUBLERS AT BOLT HOLES IN COMPOSITE LAMINATES
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FIGURE 17. NOTATION AND MATHEMATICAL MODEL FOR ANALYSIS OF
TAPERED-LAP BONDED JOINTS
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TABLE OF MATERIAL PROPERTIES FOR FIGURE 18

HIGH-STRENGTH GRAPHITE-EPOXY:

(0°/+45°/90°/-45°)s pattern:

ELt = 8.0 x 106 psi, ENt = 1.7 x 106 psi,

FLtu = 69 ksi, FNtU = 8 ksi,

(in which the subscript N refers to properties in the thickness direction)

DUCTILE ADHESIVE:

yp = 20,= 6 ksi, n = 0.005 in., /_'e
p

n(_.yel +-_p) = 0.0102 in., Eo = 500 ksi, _o
ms.x

I0 ksi.

BRITTLE ADHESIVE:

ypT = 9 ksi, n = 0.005 in., /Ye 1.5,
p

i
n(_-ye+Yp ) = 0.00042 in., E = 1500 ksi, c_c c

max

-_ 17 ksi.
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APPENDIX

The following Fortran IV computer programs were developed in the preparation of

Figures 2 and 3 for the efficiency of skin material when used in conjunction

with bonded doublers around the edges on one side only. No data cards are

required since the parameters are read in as part of the program, lllustrative

sheets of output are included for each program, The first program applies for

built-in edges at the outer periphery of the skin/doubler combination while the

second one covers simply-supported edges. The doubler _/t parameter is defined

as

OT,(J) =

tskin \_ kbE kin

and the bending stiffness parameter as

BENDK (M) = -- -

'12(1 - _2 )/_skin
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£ SIHGtE-L_ _DNF_IVF-arlNnE_ qnll_t.E_(_
C 8Dt_e¢_:Nr_ Ol _STI£ HtNC, F. cO_'_TION (no FaACT*IP¢I - UNnALANCFO STI=¢NP_S
C A[')H_EN'_ 9F._ni_,C. _._ CxTrN5ir_!_t. qTTFFNm_Sp_ UNC.qLIPLCr3 _no Ccp4POSITFS
r NCtK-r_IHFM_TO, NALITEP rqp_41JL_-rIO_ '

DIME_Iq_ CJt ( 3Ht, S_GAV(3n,IOI, _c_[_VI]O) , °FN_K(I_)
r SI=T {IVEOI 80 SP_V

OLII} = O.
9L(2) : 0. l
qt(3) = 0.15
Ot(4) : 0.2
Oll5l = O.25
riLlS) = 0.3
Pt (7) = 0.35
Ot {P) : 0._

_t[gl = 0,5

St! 10_ = O.b

StilT) : 0.8
Ot( 131 = O.q
or(14) : [.
Ot( 15 = 1.5
Ol( 16 : 2.
Ot(I7 : 2.5
qL( IR = 3,

13t( Ig = _3,5
rill20 = 4.
Ot( ? ). = 5.
0Lt22 = 6.
OL(23 = 7.
qtl2#) = 8.
Ot(25) : g.

St(26} = IO.
qL(27) = 15.
0L(28) = 20.
OL(2O) = 25.
IlL( 301 = _40.
,_t(3ll = 35.
_LI32} : 40.
qLI331 : 50.
OL(3_.} = 70.
OL(35) = 10('1.
St(36) = 2OO.
CJL(37) : 500.
OL(3R) = 1OOO.

C SET RENDING _TIPF_.IF¢_ PARAuETF p &qmAY
BPNnK[ I : O.I

RENt)K( 2 = 0.15
gCNmK( 3 = 0.2
c_!='ql')K( 4 = 0.3

Pt_NnK{5 = 0.5
g F-_.'r3 K { 6 = C).7
BENF)K(7 = |.
_ ENI_K(8 = 1.5

RENr)K (q = 2.
RFNDK(IO) = 3.
nEN_K(]1) = 5.
BENnK! 12) = 7,
RENThK[ 13) : I0.

C SELECT RENDING qTIFPNESS P_RAMFTER
nO 50 M : I, 13

C SET ADH_PEh!D THICKNE5_ R_TIn
v_ = It.

r)r] 30 K = I, i0
TR = Tp - I.
TtOvT4 = To / 10,
DIOVq4 = TIOVT4 _'* 3

C SET INITIAL ESTIMATE ON AVERAC, P 8,3HFPENr_ STRESS

V3 = I. I It. + 13. I BENDKIM)) _' T],[_VT4)

SIG_V(I,K) : V3
rm 20 J : 2, 38

C SET HON-r)IHENKISNALTZE n OVPRI, AP
v2 : ql (J} _* 2
N = O

IN:N+ l
IF IN .GT. 5001 C,q Trl 8

C PRI')GRA N_ lIKES L(r_OLIRLrRI I T(RKINI AS tlv RATIO
VIO = VB '= V2 / r_ENDK{M!

C TO USE L/T OAVl,q rnR nQUI_LF_ INSTCAr) m = SKIN, !JSF
C VIO = V3 * V2 '_ nlOV_ / BENDK(_t)
C FOI_ _[MPLY-5,JPPORTcr_ EMDS CI_: _I,'IN-rIOIIRLEP COMBINATIPN

C V8 = I. + SORT(VIOl + VlO / 6.
C FOR BUILT-IN £N_S OF SKIM-OOUFLEP CO_TN_TIrIN

V8 = l.. ÷ (_ORviV[,Ol) / 2. + rio / 2_.
C EVALUATP =CCENTRICITY P&R_MFvFP

C =K = I. I V8
C RE-FSTIMATE ^VER,IG_ SKIN STRESS

V4 = l, I ([. + (3, t B_Nr_K(MI) " (TIOVT4 / V8))
C CHECK CONVERGENCE OF AVERAGE STPCSS
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R = V3 / V4
IF ( (l.O00l .C,T. RI .AN{). 10.9999 .LT. RI ) GO TO 20

V3 = V4
GN TO I

C FVALUATE _VE_AGE SKIN STRESS AT LIMIT LOAF)
C (YIELD ST_;:NGTH cOP METALS - ULTIWATE STRENGTH FOR CDMPNSITE._)

20 SIGAV IJ,K) = V3
30 fONT INU c

C PRINT nUT TABULATIO_IS
WRITE {6951 &ENnK(M)

5 FNR4AT (LHI, 5(I}, 30X, 35HSINGL¢-LAD ._F)HrSIVF-BoK-nFD n,C.U_L{RS//

I 20X, 55HNON-DI_C_!SIONALIIED FN_MIILATION FO_ STIFFNESS IMBALANCE//
N _r_ _TIF_NcKS P_PAUETER = t FS,IIII2 30X, 30H_E DIN,

3 3X, 7HDOURLER, ]RX, 4oH&VFRAG_ ADHF_EN_F) STRESS / MAXI'AUM AnHEREND
4 STRFSS/, 5X, 3HL/T/_ 3X, 9HP_AMFTE°t I4X, 53HTHICKNFSS QATIr) (D

5011BLE_ THICKNES_ ! SKIN THICKNESS)//
6 ISXt 75HI.0 O.Q O.B 0.7
7.3 0.2 O.ll}

DO 50 J = i, 38
PO 4(} L = I, I0
RSIF.AV(I) = SIr._,V(J,L)

40 C ONT I _IIIE

WRITE (6,6) NLIJ), P_IGAV
6 FOR4AT {IH , FB.2, FJ.I.5_ gF8.5)

5N CO'IT I _IHE
W_ITF (6,7)

7 Pf]_mAT ( IHI, I?HP_C)F,.°A _ C[_MPLCT_r_}
9TnP

8 WOITE (6,9)
Q FORUt_T (IHl, 19H_IVERC, ENT ITFP_TIn_!)

_TnP

0o6 0,5 0,_ 0
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0.0
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0.50
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! .00
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S .0 r
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I0.3_
15.9D

2_ .09
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5G ,00
70,00
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lOOC .OC

1.0

0,18919

0,L_322

0,14526
0,19732

),190_1

0,29151
0,2336_

0.2C577
0.21011

3.21454
0.21qc4

0.22365
0.2283_

0.2_3C6
_.257o5

Q, 2 _41_5
0,312_2

]. 34252

0. 372_7

9,48835
0.52_c_

_.57775
0,62572

0,6677[
O .70426

C.8HEC_
0.q2]42
0,941_

0.g55C_

0,97829

"_.9872_
C.99343

_.aq_25
0,99972

0,999_)_

SINqLE-LAP AOHES|VE-B_INOEO OOUMLFRS

NON-DI_FNSIONALIIED CURRULATION Ft}E STIFFNESS IMBALANCE

8FNDING STIFPNESS PAU_:AETER = 0.7

AVERAGE AOHERkNO STPESS I MAXI_U'I AOHEREND STRESS

IHICgN_SS PAT|0 {DOUBLER TH|CKNESS I SKIN THICKNFSS)

0,9 C,8

S.29588 _.22561
C,21C_6 ?,2_0d2

C,2[_83 C,2_6
C,_I&w2 C,295'_2

C,2_723 ),23_50

0,_IU57 _,24111
C.221u2 C.?4374

C._2_36 C.2483_

S.22911C,P517_
9,23_LL ..257_I

_.2_ho _) C,26275
2.2aAr,_ r.26841
C._92_ C.27413

3._544a 9,279n2

3.31_42 6 _17_

3,4n510 L 441_5

r.43725 ] 4747_
_.4_qo4 ] 53704

",_1244 [ 8455[

Q,73.49 C 7%740
;_._4_qq 0.85_57

?._07_3 e,�C_ _

C._I0%7 _.q_q

_,994_9 L,q9475
O._&5 ",QO_ 2

Q,04075 ?,g9977
u.Qaq_4 <_.qog9_

0.7 0.8 0.5 C.4

_.2_C01 0.280Co 0.3181q C.56842
J,25565 r,2g6_2 0,32554 0._76_q

_.258%1 _.28_61 _.32925 t.38115

r.2614 r t.292q4 3,_299 _,38543

_,2_72_ C,2_5_ 5,34051 S,39401

_.27rlq i.3r2_ /,34431 ],29U32
9,273]7 E._0626 C,_AHI2 C.40_4

],2791_ _,31_4 0._557H Z._[I2q
r,2852 _ 0.3194? C.36351 C.4_997

0,2914_ C.3264_ _.37E3C D,4_806
'],2q77 C r.5l_qg }.37919 6.43741

_,30415 r,34C_ ],387_@ 0 44611

_.343_7 C,_8465 0._34q4 C 49777
L,37_2_ ].421_C '.47469 C 53q2]

C,41338 _.45415 ].51_45 0 57033
C,44_b1 6.',q_v ].55Q5_ 0 hiA5 °

2,68235 ©,72132 3,75244 _.R0556

],72263 C,757d7 0,79_51 6,_271

_,75o52 C.tSR?% C,_?102 _,05481
}.78517 C.qI_7Q ?.8420& 0._7295
C.R7951 C._e2d_ 3._[027 C.927_

G,91qEq _,9_[00 ",q_230 C,05375
u,g44C2 2,95196 ],95992 C,c_790

0,95_84 0,9647_] J.97955 ©,q784_
3,90H40 C.W7297 _.q774b 0,98[q@

J.qT[C9 C.975o4 6,09212 3,095_6

C.QB53_ 0,98562 C,08862 ^.09043
_,9o_q7 0.0a227 0.qq_56 3.9')486

0._9541 _.9gbF7 C,99672 ¢.99738

O.gUWgC C.9998_ ¢.0_98_ ]oc_9_9
r,nO995 _.Q�¢_b 0.99986 _.9_89

0.3 0.2 O.l

0,43750 C,5_848 0.?000_
9.44723 0,54929 0.7).030

6.45209 0.554_5 0.71525
C,45o95 0,55997 0,22014

C.'+6181 0.56525 0.72501

0.466o_ ,_.=,7044 ,7.7297[
0,47150 r',575_ 0,73433

C.4763_ 0,58,]82 6,73885

0,48595 0,59_97 0,74760
].4_52 0.('._093 0,75601
C.5053_ 0.61069 0.76406

0,514_,6 _.62625 0.77178
0.52_8C C,62c;59 0.77918

C.53311 0

C.57763
0,8142? 5

t.85',18
C.6_47C C

?.TLg_L ?
_.74590 ,J

G.7_74

3.82_C0 ,7
C,_5044 C
9.s72_7 0

0.8a053 C

63072 0,79827
08117 G,81744

71811 6,84275
75_J9 0,88337

77782 0.88032

8_[28 _,89438
82166 0.90614

85448 0.92648
_7933 G.93797

_840 0,94815
91_4_ 0,95602

02539 0.96222

G.qJ3_C ],93506 0,98719
0.965,90 0,96960 0.99179

0,96525 0,97678 3,98831
C,075q0 0.@d_82 0,g9192

C._822_ C,98815 0,99408
C,98b&I 0,99005 0,99548

0,98928 C,99288 0,99643
C.g_28_ 0.99522 0.99761

0,09615 0.9974_ 0,99872
C,894_4 Q,99_89 0,99935

0,99949 0,99966 0,99983
0,99092 3,9_q94 0,99997

0,9q992 0,99994 0,9999?

O[]U_LER

L/r
PARAMETER

O,C
0,10

0,15
0,23

0,25
0,30

3,_5
3 ,_0

0,5]
0,89

0,70
0.80

9._0

1 ,CO

1.50
2.00
2.50

3,30

3.50
4.00

5.3C
6.0 m

7;^0
8,00

19.00

15,00
20.00

25.03
30.C0

35,09

40.00

_0.00

lO0,OC
200,0C

500.00
lOOt .00

SINGLE-LAP AOHESIVE-G,gNOEU DOUBLERS

N3N-DI_ENSII}hALIZE') FCn-qL_TION FOR STIFFNESS IW_ALANCE

G6NOING _TIFF'_ESS PARAMETE'_ = 1.0

1.0

9.25_,]3

_.25472
0.25711

0.2595[
9.26103

4VaRttGE A�HE_END STRESS I _&XIMU _4 AI),AERENO STRESS

THIC_,_ESS RATIO {brIU_LEq THICKNESS / SKIN TH{CKNESS}

¢.9 r.8 0.7 0.6 0.5 0.4 0.3 0.2 0.I

0.27r27 C.294L2 0.322_8 0.35714 0.4]JOl 0.45455 0.57632 3.62590 0.76923

C.__757.3 0.29q78 9.328_2 C.364t'3 0.4276_ 0.4/_29 _ C.53532 C.53416 0.77681
].)lg(4 _.3-264 9.331_6 0.38749 ]._*1142 C.46707 ,,.53978 C.63862 0.78051

C,2_066 ";,3C551 0,33_12 $,370fl_, 0,4[52} 0,47123 0,54423 ?.,64306 0,78412

_._3_,2 O._C_4C ),_'_829 _,37445 ?.41_Cb C,4753_ 9,54865 3,54753 0,78765
9.2o4_ r.?_c5 Q.5LL3r

3,2_6_2 9.20_&3 C.3[422

2,2602_ 5,'_131 C.31716
_,_7425 r,_67_ 3,32307
0,2793L 5._2221 3.]20_,3
@.2_44[

3,2095_

9.30r[I

G,35563

_,414]]

3.44358

_.47275
9.5_qG_

3.56?46
).62743

3.6680'?
_.7]455
].73577

0,99419
0._2521

0.944_¢

3.05711
D,O659_

0,9_752

0.9g355

n.9983C
C,9907_

_,9_9q3

C.33775 0.335C6

2.113a5 _.7411 a

_._474 _ 35_44

_.3%391 ? 3_78
r.3848_ C 4[676

¢.41407 9 4_C

].4_5_4 ] 4_dAu
_._75tR ? 51143

i.sC5_4 [ 54[2 c
r.56156 i] 5887_
3.5[235 _,645_%

0.o67_q 9,_8872

C,49%94 9.72642
C.73725 ].756P_

C,75_37 n,78354
6.85_75 _.8706P

_,_2453 "._[492
?.q3251 C.939q4

3.)4992 3.95544
_,96138 _,96565

_,_o_32 S,97272

_,77933 _,98_6(
_,9d567 _,90994

3,0_42 _ ],9_485
3,9_547 ¢,99d64

C.9_975 2.99977
f.9@Og4 ?._904

2,34142 o.a/T94 C.4_2B8 ].47954 C,55304 C.65188 0.79110

C.34467 q.3B145 S.42_/I D.48368 C.55741 ?.65_18 9.79448
0,34738 ],3349_ _,43054 _,4H?_2 C,56175 G.6b043 C,70778

2,354_} 3,392[ _ C,4_82J 0,49635 _.57634 0,88876 0._D425
].360_ O._qo]_ C.4459_ 2.5342_ 0.578_2 0.67688 C.81039

C,38738 0.40n18 3,45352 C,5t232 0,58717 0.68480 0,8[627
C._73q6 C.41333 C,46112 0,52044 ],59540 C.69251 0,82|9X

C,]e_59 _.a204_ C.46_29 C._2e45 0.66349 0.?0200 0._273_

3,38737 [,4275R _,47639 6,5563_ _,61145 0.70730 C,83248
0,42581C,46329 Q,51387 9,57432 _,64912 C,74081C,8553_

Q,45453 C,4_d4_ C,54qg_ 3,61077 0.683[2 6,76972 G,87395
9,_8780 0,53257 ],5d429 0,64396 0,71351 G,79460 0.88929

?,5252_ 0.55516 9,a1622 9.67428 C,74050 C,8|600 0,90204

0,551_4 C.5_5_6 5.64983 _.79177 3.7643g 0._3438 0,91272
?,_8r98 0,62470 C,O2312 ],72657 C,7855[ 0,85035 C,92176

],_3487 0 8752 _ ?.72G84 0.768_7 6.82448 0._7637 0.93607
1,89178 C
].72172 C

],/555? 0

q.7_414 0
3.80943 0
3.08o25 C

],92937 C

0,_4738 0
_,q6C98 &

],96_93 0

0,97612 $ o7943 0,9@286 0,o8829
Q,98389 C.9561[ c.gqM43 0,99675

C,9_120 C.o9247 0.9937_ _,99490
O._g54g _,99_[4 0,9987_ 0,99?43

C,ooA_[ 0,q9898 C,99915 C,999_2
c,909_¢ C,99933 C,99986 [,099_9

_,99o95 0,0999_ C,99998 0o_9989

7i963 3.76616 G.o]331 3.84836 0.89621 C.94679

75_36 C.79_61 _.8_062 C.82_5 0.91127 0.95502
7_6_4 0.019_7 C.85310 0,087q4 0,92412 C,98_47

_[243 C.04156 9,97155 C.9C23_ 0,934¢6 0.98661
83_94 0.8_007 0.R8675 0.91412 0,94218 0.97071

g02_40.a[7_q 0,93408 C,95028 C,98672 0,98_29
93579 C.04038 0,95702 0,96769 0.q7841 0,98913

95484 0,06232 0,9f1902 0.97733 0,98479 0,99240

q6653 0,97208 0,97765 G,9R314 0.o8877 0.994_9
97421C,o?_49 C,98271 C,98704 0,9_1_8 0,99568

C,98922 0,993_5 0,99658
0,99307 0,99538 0,99769

c,g9624 0,99759 0,998?5

0.9o_e? 0,998?2 0,99936
0,99949 0,99966 0,99983

C,09992 0,99994 0,_9997
C.99992 o.q�gg& 0,99997
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DOUBLER

LIT
P ARAME T J_:R

0.0

0.10

0,15

0.20
0.25

0.30
0.35
3.40

0.53

C.60
0.70

0.89
O.QO

1.0'3

1.50
2..00

2,5'3
3 .CO

3.50

4,30
5,09
6,C _

7,_.0

8.00
9.00

lO.OC
15,0C

20,'10
25.00

30.00
35,03

40.00
50.00

70.00
10C ,OO

20_ .0_

50C ,03
1000.03

SINGLE-LAP A�HESIVE-_ONDE;) nCURLERS

NON=[JI_"g'qS[ONALIIED FORMHLATIr"- ' FQP STIFF_';ESS I_BALANCE

BENDING STIFFNESS PA_A'4ETER = 2.0

_VEPAGF AOHEREND SFRESS / NAXI_L)N ADH_REND STRESS

THICKNESS RATIO (DOURLER THIC_NFSS / SKIN THICKNESS)

l.C _.g O.a

0.430_9 _._255_ Q.45455
0,40_34 3,43114 n.&o041

0.4Cq_4 0,43397 0,46338

O,&IC73 C,&367_ 0,46532

0.41516 O.e&?47 G.47Z24
0,61_95 9,_&529 0,47518

0.4_157 O.&&q[1 0.678[2
0,&26q9 C,45376 3,4_399

0,432&) 0,55999 ],&_@32

0.63793 C.6bSr2 0,6g566

9,445_6 ¢,_7625 3,507Z[
9,45_07 C.4_IB% 0.512o5

9,48157 e,5_eS_ C,$4[I9
3.5_7_4 C.535_ _.50S_C

0,533_l _.5_254 C.5o#42

?,58Z49 5113l C,64237

0.b3545 C ,,_3 t._642t
_,667_t C 6750] q.7C36C

0.6_556 0 licit C.73767
_,7195_ r 7_2_2 C,7_hg7

_,7475[ C 75947 n,7_21_
0,772_3 _ 79297 r,_1375

0,79470 ] _[33_ r,B323_
3,8607_ 0,8_72_ r,_4@2

0.9[79| 0._[961 C.0282A

0.93537 C,q&l?4 C,94£14
3,951"8 C,95595 0,_6079

C._CITO C,96551 C,_n32
0,_6q21 C,_722_ 0.97555

o.qTea6 ).O_CO7 ,_.08_08
0._8918 C,9_l C,9_J56

9.99394 3,_4_6 _.c_5c8
0.09_34 C,_9_53 C._867

3,9_97Z _._75 ?,qOgTH
3,99995 '?,_oc4 0,_999_

C.7 0.6

n._SlBl 0.5_32
0,49393 C,53265

O.&gTrI C._35@3

0.50CC6 l_.538_R
0.50311 _.54ZL2

3.50_2t _.5452S
J.50925 C,5484]

0,51229 0,55[54
C.Sl_ 0.55?72

C.52435 _.56395

C,53023 0,56992
].53627 3.57593

0.54216 0.58te9
0.54_01 3,5R777

].5765_ 0,61623
C.6C372 6.6_2_3

0,62937 6,6677o

0.65344 C.69C_
0.67589 C.712£7

3,69075 ?.73161
0.7339I 0.765o7

C.76561 9,79_q
0.79256 0._1912

C.81550 9,83959
S.83507 0.85695

O.ASlq5 c.q71bb

0,9075_ _,92n_6
0.93TC_ _.94594

C,95455 _,g6c99
C,96566 C,9705_

0,97316 8,q7606
0.97_32 C,0_[42

3,9h510 G.05724
5.9_I 7 & C,O0293

0,9_5b9 _,9g{,31
_,q9@M4 0,99g_0

O,9OOq[ C°99q83

C.5

G.57143
C.5774_

C.58114

6.5R_35
C.5qlb3

C._9£70
C,5o385

0.597C5

0.60942

0.62144

_.6_7_
C.6_315

_.660_6

0.71011

0.73153
v,75117

'],7_986

C._2542
0,84667

_.B6435

C._793l
c,qg_{; l}

0,4 0,3 0,2 0,I

,62550 ._,68_66 0,75923 0,86957
.63147 3,6959& 0.77653 0.97322

,[.63469 C'.59_9I 0.77729 G.87500

63743' 0.701q3 0.77990 Cl.87673
6z. lG2 C.7C491 3.7824_ C._7843

64405 S.757,]6 C.78499 C.89C10
_4726 0,7lCTd 0.79748 0.88173

6%334 0.71_67 9.78993 C.,_8354
656_8 2.719_ 0,7946o ¢,.88643

66247 0,724"_5 3,79934 G,8_94_
_6915 C,730_7 0,8Z393 0.89228

674[2 n.73566 3._')85[ 0.89504
67070 C,Ta3,_4 0.81256 2.8976g

._q_6 C,76R6,_ 0.81668 C.93025

.7t157 P.7b934 0,_355_ 0.91172

.7_54t 0.79018 0.e5173 0.92128

,754aa. _.80847 0.86576 0.92935

776L[ 0.8257t C.07796 0.9_622
C 79_36 9,85911 C,59_60 0,96212

< q_995 C.85_90 3,@9793 0.94"/22
3 _,3567 C.873._3 0,91341 0,95555

0 85730 C.69374 0.92566 0.96204
0 87316 0.90_79 0.93566 0.96710

0 _8996 0,91632 C,04345 0,97127
6 _r233 0.92590 3.95CC3 ,3,97_-68

C O_Z76 0,9_3-')3 0,9555_ 0,97752

0,_3324 C,9&b_6 C,9596_ 0,97295 0,99633
C,95484 C,96379 C,97277 0,99160 C,99085

0._6744 _.97_91 C.98041 0.985_7 0.99344
0,9?542 C.9_32 C.985t7 _,99GII C,99506

0°93_7u 0°98456 C,98_2 0.99228 0,99614
C.9_452 C,O87h2 0,q9371 0,99381 0,99691

0,_S_37 0.(9[5G C.9936_ C,99576 0,99788
C.0_4[[ n.9952q C,99447 0,99765 C,9988_

0,995_5 C,Q97_4 C,_gQ[& 0,_98_ 0,999_9
q,)9717 C,cO9_& C,99950 C,99967 0,99986

0,9_936 C,_9999 C,09992 C,999_4 0,99997
0,99996 C,O9Qq9 3.99092 0,9999_ 0,99997
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r SINr-LE-LAP Ar_H_IVE-RnNnED nOU_tFRS
C ADHEREND PLASTIC HINGE PO_MATInN (n_ ¢oACTUPE) - IINBALA_CEp STIFFNESS
C AF)HrRENn _ENnINC, A_ =XTENSIO_'AL £TIFFNESSFS IJNC(3_JPLFD FOP CP_PnSITES
C NnN-_IME_SIqNALIIFP F3P_ULa'IO_'

DIMF_JSION r_L(3_). RIC, AVI38,10}, ¢SIGAV(IOI, _ENDK(13I

f SFT F'VERL_P &D_AY
Ol( 11 = h.
OL(2) = 0. I

nll_l = 0.15
nL|4) = O.P

Otl5l = 0.25
9L|6) = 0.3
OL(7| = 0.35
OLIS) = 0.4

PLIql = 0.5
0£ IO) = 0.6
OL 11l = 0.7

Ot 12) : 0._
Ol 13) = O.q
OL 14) = I.

Ot 15} = 1.5
nL 16 } = 2.
NL 171 = 2.5

OL 18 I = 3.
OL 19 ) = 3.5
QL 20) = 4.
nL 2[) = 5.
qL 22) = 6.

OL 23) = 7.
nL(24) = 8.
qt(25) = e.
eL(26) = 19.

Ot(27) = 15.
_L(28,) = 20.
nL{29) = 25.

Pt ( 30 = 30.
GL(3I = 35.
_L(32 = 40.
nL( 33 = 50.

Ot ( 36 = 70.
nL( 35 = 100.
nt(361 = 200.

0L(37) = 500.
r)t('t8) = 1000.

C S_T BFNr)|N6 £TICFNF£S PAI)_MCT _p _RP&Y
RCNF_K ( l ) = 0.1
_ENaK(2) = 0.15
RE_!nK(3) = n.2
_ENnK(4) = 0._
nFNF_K(5) = 0.5
_ENnK{6) = 0.7

nEHDK(T) = i.
_cNr)_(R) = l.q
(_F_ImK{O) : 2.
RE^linK(|0) = 3.
RFHqK( II ) = 5.
ENnK(12) = 7.

am_qK{l_) = lq.
C SELECT P,_NOINC, CTTF_Nc£S PA_4_TP o

'hO 50 _ = I, 13
C S_:T ADH_C_NO THIrK_ _qS DATIq

TP = tl.
_m 30 K = I, l0
IF = TP - 1.
TICIVT G = TO ! i0.

DIOV_4 = TIQVT6 "* "_
C SFT I_'ITt_,I _STl_"rF _J A,V C:O A,(i l:: &_HF_ocND ¢.T9c'.S__

V3 : [. / (l. ÷ (3. I mE"I["K{")I * TIOVT6)
£1C&V(I,KI = V!
mn ?`9 j = 7, 3_

r SET _oN-r) I_FNSIQN_,L 'TCF) aVE_LAP

V2 = _LIJ) *,w 2
I_ = 0

IF: ( P,! .('.T. 500) q_ T_ 8
C PI_FIP, PA VI lISPS LI_OIJP,!c:::'') I T(SK_N) t:q LIT _&TIF'

V]O : V3 * V2 ! AFNr_K{ _l

C TO USE LIT _&rl_q Fn# nOtl3LEP !_!S_;=_m hi= KKI',_, USE
C VlO = V3 * V2 * 31_V_4 f RFN_K( V )
r FOQ £IUDLY-SIInpOP_F _ cNF)q rqF .qK|N-_F_.IPLr3 C2._PINATImN

V£ = I. * _O#T(VI3) * rIO / t_.
C FOR RIIILT-IN rNF)S nF SKIN-DqlI_LF_ cqu_I_TIpN
t" V_ = 1. + (q')PT(Vl,,`9)) / 2. • V['_ / 24.

C _K = I. / Vq
r P_-ESTI_ATF _,V_aAc, F SKI',! _¢_

V4 = I. / (t. + (_. / _r_'OK(_')) _ (TIqVT4 1 V_})
C CHFC_ CO_IVEm_NC c pF 5VC_F KT_FSS
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P = V_ / V4
I_: I IL.OOOl .c,v. o) ._Nf). (0.9999 .LT. _'1 I r_n TO 20
V3 = V6

r EV_,LUAT E AV_:_&.q!:: _,v-.l"l _TOFS_ _,T LTMIT I. nAO
C (YTFL r) STC_'_IGTI'I ¢:r'lO '_I-T._L_ - [ILTTN_TF _TPF__GTH FF')Q _nMPO_ITFS}

20 STGAV {.J,K) = V3
30 CONT !_,J_

C PPTMT _U "r T&RUt. STTn'qc
WOI'rE (/_,5) r_F:N'_:('4)

5 F,")_'4_T {].HI., 5(/|t 3D.X_ 351q_|_4GL_-| _ D AI)H_TVF-RF)N_Er) DNIIa,_LCp(;//
[ 20X, 55H"!_I-nI_'CNSION&LIZPO F=_}_MUL_,TIqN Fr}p _TI_FNFSS I_L&NCF//
2 30X, 30HqFNDING STIFFNESS PD.P_METE o = , FS.Itll

3_(, 7HDDUBLEQ, L_X, 49HAVEPt-G c aDHE=EN.r) STP_SS / M&XlYllM _,'}HER_Nm
STRESS/, 5X, 3r.ILITI, 3X, O_P_AMFTP_, 14X, 53HTHICKNrSS RAvIO (f)

5OllBt cR THICKNESS I SKIN TH!CKNFSS)/I
6 ISX, 75H1.0 0.9 0.8 0.7
7.3 0.2 O.l/)

_r_ 50 J = 1, 33
DO 4.0 L = I, tO
PSIGAV(I.I = SIn_V(J,LI

_.0 K r_NT T MI I_:

6 rr_q',1_T (].H , P3.2, FLL,St q_8oSt
50 C ONIT I _'111=

!V_ _ T ¢" (6,7)
7 FORmaT (L_I, IT_4PPqGP_ t_ COMP| cTr_D)

STI_P
.q WOITC (6,9)

9 FpRHST (I_I, I9_)IVE_G_NT !T=_RATIq_'!
_Tr)P

E N r}

0.6 0.5 0._ 0
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OnUBLER

LIT
PARAMFTER

e.0
C.19

0.15
0.20

0.25
0.30

0.15

C .40
0.50

0.60
").75

0.40

0.9C
1.0 '_

1.59
2.99

2.S0
3 .C')

3.5G
4.99

5.09

o.00
?.00

8.00
9.00

I0.00

15.nQ
20.00

2S._0
30.00
35,00

40.00
20.0')

70.00

IOC._9
200.00

5C3.GP
1000 .OC

SIN{;LE-LAP AUHESIC_-_UND60 UOU_LEPS

NFIN-')|','ENSIC'_'.ALIIF-n F:_RM;LATION F{_R S[IFFNFSS IMBALA_'CF

r_EN_I'_G STIS:FNESS PARAN'_TDR = 0.7

_VERA'3£ '-DHERE'JO STRESS

Tt¢ |C K,'i_ S S RAT|O |D_]UBLER

I.C C.9 C._

O.IBqlO _.?_c!_ C.225_I
O.IQ7_ S.21_c2 0.235_I

O.21Cll 2.22_]i D.2_176
0.21_5_ _.73_CI ?.75721

_.21o]4 ].P7 _o i.Z6275

9.223,.2 ].?_C_ :.2_1
0.233C% ].)_447 ].279c2

0.25261 1._7_;i _ ]._2_
0.2631% C._74 _ ".31_24

G,ZT377 i.2_To 0.32_9

0.34291 ).I732" 9.40_g =
O._$3_5 ].0377 _ ¢._7_75

0.465J5 _.6_994 L.%_7c4

0.57772 ",_IC65 ".6%_%1
_.62572 6._5, _ ].6_c _

9.8_C37 :,_73 6._7127
_.866C& "._7_C5 C.8_215

2,_4137 2._71 _ 6.95205

0.9_296 ?._!_7 C,0_o79
0,9_71% 9.94o_ 5._972

O.OgC_l O._[$I _.997[I
0.9934_ :._oqi_ _.q9471_

0,996_7 C. _96_I Q._°72b

0._0_5_> _.9996[ C._QVE_

I WAXIm'I_ AOHEQEND STRESS

T_ICKNFSS / S_IN T_ICKNFSS)

C.7 0.6 C.5

1.25:C: _.2EC:C :o_1819

7.2613_ 0.29294 0.3_29_
_,25723 C,2_55 O,3_C5L

3.27315 2.3?_2_ ",3_,_lI

0.2_52e ].3lq): C.3o351

_._37:] 0._7/25 So42L _2

2.3_:_4 C.3O735 _.44291

_._79_5 0.42_'_2 C.&7GEO
3.449,_4 n.4o57_. 0.55_53

:.51_q 3,5'_453 :.*,I_73
1.5796 v ?.62537 $._,7SGR

C*.63_-92 r.5775! )._2310

:.6q?_ C.72132 C.76240
_,72_b? C 75767 3.7_45[

_.A_695 3 qr263 O,°lff_6

Q.9S534 _ %1855 C._I_4

0.4

_, 395',2

Z.40263
C,_+IL2Q

_. 42966

C.43741
?.45t*HQ

:,4_?11
C,49_26

"_. 52_85

C,61456

C,b7_20
:.73]29

?,T71q _
C.RC556

:.q12_3

?. q2O l:
C.q_453

6.c:537h
C .97642

6.98575
C.,79 ]:,3

C.O<'316
C,qgGd7

C. 904 : I
0,g97_8

2.'99_63
:,9993]

?oO99R2
C.O_07

_.G949 v

q.919a4 3 93_97 :.942_5
3.o_8>_! r _0465 2,97055

C.97529 $ o7_4 3.gB22C
6.c_333 0.9_02 C.9_8C2

C.qdBCl t.oBiTJ C.99_5
9.9ni?I C.9923C 3._3358

C,993_[ ?,904][ 0,9_5_[
S.9o542 _.oqOl]7 0,99673

£,9976: C.o_79_ C.9_829
,,uo_C 3.9,1H_7 C,_3c14

].994h9 _.999m4 0.99978
_.qqQq5 £.QqOg6 0.0_996

0.3 0,2 0.I

0._375 r C,53_46 0.70000
0._56_5 0.55996 0.72020
c.46o65 ?.57C4_ 0,72971

C,47632 C.5_0_2 0.73884

0.48595 0.5qC97 0,74760
9,ko552 0.5609_ 0.75601

C.50505 _,01_69 0.76406

C,514_, 0,62625 0.77L78
C,533lC 9,63_7o 0.7B625

r.55IZ_ _,65o37 0.7q955
C.56_C_ _.67310 0.8117b

¢.58b[9 0.6_R]0 0.8Z298
0,607_1 0.73390 3,83330

C,6[q83 C.V1613 0.8_279
0.5897& 0,T77_9 6.88035

0.7_593 9.82155 0.00611
0.78974 C._5&&_ 0.9244B

O,R_&OO _,_7953 0.93797
0._5094 0.998_0 0.9_815

_,8723t 0.913_3 0.95692

C.9056& C.o3503 0.96719
?,O247q 0.9495[ 6.9745B

C._3)78 C.95_5 0.97965
C,95072 0.96702 0.98340

0.95993 C.97254 0.98620
C.96526 C,g7671 0.988B5

0,9823] 0,9@820 0,99406

C.98924 0.99284 0.99643
C.99Z_3 C,99522 0,99761

0.9q&87 0.90658 0,99829
0.99615 0.99744 0.09R72

0.99701 0.99851 0.99000
0.99804 C,q9R60 0.99935

6,99597 C.9993[ 0.99966
r. Q9J&9 C.9996b 0.99983

0.99OB7 0.99991C.9999_
¢°g9998 C.99991 0,9999b

0.99998 6.99991 0.9q096

DOUBLER
L/T

P_R&METF_

O.D

O.lO
9.[5

0.23
0.25

9.30

9.35
0 .c.9

9.59
0.60

0.70
0.83

0.90
I .OO

1.5C
_.09

2.50
3.90

3.50

4.09
5.0,9

_,.$C

7,00
8.09

9.00
I0.00

15.C0
20.00

_5.00
30.00

35.00
_0.03

50.00
70.00

100.09

200.$3
_09.93

1000.00

SINGLE-LaP AI):IESIVE-RQN;3En D(]J_LERS

NF]N-DI"ENSIN'_ALITEI] FIIR_HL_TIOF$ F,IR STIFFN[SS [MR_LANCE

_ENDING STIIF_FSS PArAmETeR = 1.0

AVERAr.G ADHfKEND SI",:FSS I MAXIMU_t ADHE:'END STRESS

THICKNESS R\TI n (00U_L_:R T_IC,LNESS / SKIN THICKNESS|

1.0 0.e 9._

0.25333 3._7C27 6.2_12

0,25951 0.2S06o 7.32551

3._b435 3.7S505 C.31_3 n
0.26o25 ".2_151 n.3171_

0,27426 3,2467_ :.32397

9.2_441 _.3n775 2.3%5Cg

0.2995q 0,3[3_5 3.3_113
3.3"311 _._2473 2,_53_&
2.31CS_ 9._3A2_ C._559

0.32177 9._03 C.37_47
0.332%8 C,_5997 (.39117

_.34416 C.%llo4 :.4¢_93
$._555_ 3.334{6 _.4[67_

).&7278 _.52536 2.5_125

).52_97 r.55156 C.5_67q

9._086 3.6[235 C.64599
0.627_5 5,_573c 2.6_872

').668+3 5.53o4_ 7.72542

0.7]574 0.75935 7,7q359
C.7862_ _,4]_7 3,g2516

0,82_37 _, _G[C2 _,R57_7
3,B536) C.Sb/_7 ¢.n_l_7

3,8?6)') ].qg5_C e.9{:_9
0,80421 _._344_ C,9[W_7

0.94443 3._q986 (.95541
0.96591 3.]6931 C.9T771

0.9S335 C.0_5C2 C._896(_

0,99_23 G.oqtZt C,9021 c

C.99357 O.gq421 2.c94a_

0.9)66[ O.J_605 C.9972G
9,g9@_0 0._o@47 3.99R64

],90956 0._996[ C.�gQ_5

0.99003 _,099o4 0.9)_04
).90993 C.99gq4 ].99994

0.7 C._- 0.5

).3Z?_ 0,.3571_ _.4CSSC

:._3511 ".37C_ 6.¢15_3
3.54147 C.37i'r* r..4?Pd_

]_._G7_7 0.35G_b _.43C54

0,3_.43 _, 9.392:S _,¢3_.2"

)._7_R C _rsl_ C.45352

:.37_6 q 41330 ]._*_I17
C.5_72b _ ',27_2 6._,766_

q._CC_4 0 _,41q? '].4¢154
q.414Cq _ 4bo[9 C.5.649

],4Z7%@ 0 _.7030 ",5_[_
C.441':6 S 4_45 _ 0.5%5?4

_,4545[ '5 49_46 _.5_q97
],52Gl_ C 56515 ¢,ol52[
:.5"_C94 ] b_ _,77 U,57317

5.6_497 3.'_7',L5 0.729_4

0.6_17_ ?.71_43 _,76016
_.72).77 3,75o3_ 0.7q2bl

0.755?7 C.Th_ 'JoELg_7

C.4C545 ]._9S39] C,_&_?5
[.6:_6h9 C.qt_5_ Qo_3579

_,qT&q3 _ _2[) C.OJ95S
5,89(_20 0 91C5_ :.925|9

,].g1249 C_ W2_,77 ;]oq3712
_,92534 3 935B5 ¢.0&&42

,].o6C_6 9 95_51 3.'-;72]8

3.97611 '] 97V52 :,_$2_2

_ e 9qf_ _,6 O* 9Q'_C _ e,qW169
0.9&124 ').#q249 _oo9375
],9Q3_7 0oQ9414 c,gQs[Z

C.99R5C C.g96l& ,].49679

0.097A3 C.gq797 C,ggd)[
3.99_9[ C,994;4 3,o9_),5

q.9996w C,o,_7_, C,9)q78

'?.99995 '-:'.O(;_'36 C,9"_996
0.q9995 0.09945 q,09996

0.4

].454%5

2.47[23

C,4_7_I

Co4952_
:.5043_

C.573<,4
i.5bh4P

q.552_b

3.5_2 )_4

C,59073
O.6[QkO

C. _2552

3._3331
C,S33hZ

C.g5:IIC

9._2
0.qi327

C.)277q
C.c%992

Co 'Y49 _4
3,q5793

_,97764
_._5_3

C.9W775

2.qq_36
].0-)509
0.0_610

_.9974_

3.99a65
C.99J32

C. oqq;13

0,99QO7
0.99997

0.3 0.2 0.1

0.52632 9.625D0 0.76923

_.5_4_2 .].64_|2 _.78415
d.55304 6.O51_R ].79114

0.55[75 9.66042 0,?9784
C.5/034 0.66876 0.80425

C.57_2 0._7_8R 0.8103g

2.56717 C,6_480 0.81627

C.5_5_C 3._9251 C.82191
_,51142 0.7')72q ].8324_

).62_97 C.72125 0 84219
9.6&[50 _.7344b _ 85113
Go65623 :,74&96 9 @59_6

9.66_7 0,75863 C _&6q5
c,6_31_ _.76955 C 873q7

C.74547 C,RI5#o C o_20l
C.7_h&90.BSO&l C 9Z[74

0,_2_68 C._7637 cg3807

?._4436 C._621 C 94679
C.970_5 0.91177 C 95502

3°88794 C.a2_12 C g614/

C.914_2 0.94217 3,97079
6.93222 C.9545G 0.9T709

C.q4519 _.96327 0.98148
0.95&77 _.Q6q73 0°98477

2,96234 ¢,97463 0.g8725

C.95770 0.g7835 C.9@917
C,_8322 0,g887| C 994_7
C._959 C.09314 C 99657

C,99307 0.q9538 0 9976g
C,995C_ C,996_R 0 998_4

C,99625 C,09750 C 99875
0.q9707 c.qgR05 0 99903

O.qgRC7 0.99872 0.99g36

9.99_99 C.99932 c.9gq66
0,99949 c.q996_ 0,99983

C.99g_7 0,q999[ 0,99996

0,99998 0°9999| 0.99996
0,g9o98 C,g9991 0,99996
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DOUBLER
LIT

PARAMETER

0.0
0.10

0.[5

0.20
0.25

0.30
3._5

0.',0
0.50

0._,O
0.72

0.80
0.93

1.0O

1.50
2.D3

2.53

3.0C
3.59

4.09
5.00

6.0C
?.00

8.00

9.00
I0.03

15.00
2C.09

25.00
30.00

35.00
40.00

50.G0
70.00

I00 .CO
ZOO .OO

500.0")

iO00.00

SIHGLE-LA_ AOHESIVE-Sq_DEO DOUBLERS

NON-DIMFNSIO_:ALIZEn ¢ORMuLATIDN FOR STIFFNESS I_RALANCE

B_NO|NG _TIFFNES_ PARAMETER = 7,0

AVERAGE AnHERENO STRESS / _AXIMUM ADHEREND STRESS

)_ICKNESS OATI_ |D,)UnLER TH|CK_ESS / SKIN THICKNESS}

1.0 0.9 C._

0"4_ _12C _ " 4 2 _ 5 _ r ,45455

0.4177_ 0.6_ "-_ _._5o35

0.41_16 r.Rq)Rt _.47224

0.4P15/ C._4=[I 9.478L2
3,626_ *,4537_ 5,4q3 e'q

0,6324:" £.'*5°3; ';.a_c)_2
_.437_2 ].','_%r2 C,Ao56q

0.443?4 D.47C_%* '.5.?I:.4
0e654_]6 C.4_I°_2 ?.512q4

0.464d_ _.40295 7.52432
0.47567 3.53_+C4 C.53557

0.4q63_ Z.5[t*qd ].e467_

9.4g77[ _.52_5_.2 C+.5576_
0.50755 C.5_,49 5.55_41

3.55847 C.5_755 C.61_57
9.6C569 C.43 _:*' ::.5641q

3.6/+?qi _.6_L3 _.75_4-C

9.7165-_ Z.74272 C.7A697

L3.74751 ?.7_,_47 r,Tg21_
_o7g&6'_ _.0[_31 7.83235

0.89;]5 C,_?rq C,'_lVll

C'.qlC_7 5.'_leE7 C.92_73_

O.9692! 7.97>27 ¢.g752 _"

0 Q:_45p r.g,_, q7 _.qR/_

0.9;4'424 _.0_/_2 0°g9C6_ _

0.9)_75 _).991% n C.g)261

O.gq_A4 3. )_:'_[ ].qgP, 67

O.Qg}S7 ?.q_6_ i.qgqo5

3.99_!_ 9.)9qc;4 O.9_q_&

C.7 O.b

9._ZC]S 5.53962

0.57e21 5.54530

3.%1299 9.52154
C,£_q34 0.5577Z

).524_5 q.56355
3.53633 5.5o9O_

C.53627 C.575g}
C.54q0) ¢.54775

C.55055 C._o_33
].57C_1 _._1C64

C.59206 C._2167

_.5929_ ].5_242
0,6Q373 C,642@q

0.55341 C.690qi
C.60672 C.73159

9,733_1 <,.765,47
0.7o56[ :].tg4R5

).7q256 C._19£2

0._1550 5.83959
Q.RSII& _.H7175

]._7870 0.n_535
]._qglC C.91336

].9l_ 0.92073
C._2724 .... _374_

C.93712 _.q46G7

.96564 ?.97C52
?.g7_&[ ?._#159

9._8511 _.o_724
Q._L7 0.99]72

]._917T J._%295
©.9935& _._Q4_6

5.9_771 ]._a?4

C._qg7 _ _.99C74

r._g_5 C.qq_g_

0.5 0._ _.3 0.2 O.t

0.57163 C,625J." _,o8"9h6 C.76923 C.fl6957
0,5q4,39 D.637')C 0,70lq5 ?,77936 0,8767l

C.59075 "_.6'*&2C "].?L_IWO ."2..7_4_-o7 0.8_C09

0.5q7C5 _,5'_?_q 3,7L371 C,?8990 5,88352
0,60326 C,655c., 4 9,71q39 0,3'q46 c_ ",85643

}._qRr _].6624T 0.724-')5 0.79934 C.8894L
2.G[545 &.6_35 r.73337 C._039_ 0.8022_

C 62144 _._,7412 Z.7356¢ O.8Og3l S.R9504
.533_. _. 7.,-_535 0.745o9 C.816_.q 0.90_21

C 4445l 7,t_"-16 C.755o2 0._245_, C.96504
._ &5554 5.7C5)7 0.754aq r'.'_LC_7 C.q5_52

O <_h622 q.TISbb C.77372 C._8_5 Q.QI36q

t 5765,, .].72017 C,7R213 0,q4S53 0.c)[755
0 _%_,%5,_ 7.7_5_ o.7qc[A C.A5[74 q.92[21

0,7315_ ?.77611 ],q2475 C.@7}'9G 0,o362l
5 703q6 ]._")_[ C.O51g_'_ G.gq?g[ 0.94722

79Q_h C._h7 [.Q{34_ O._,l_Rl q.q55'_O

5 8254_ .'._T_,? ¢.8_C? r- re.q?56% O.g6204
3 riR#)A7 _'._751 '_, 0.-9947_ 0._5545 0.9_,713

R64_'-, ?.._qgc)_ t.q[O$2 ?.94355 D.gl[27
] 9r) 7C 4 -.0127% f.}3"q2 C.q55'33 n.07747

] 9}.Zl_ 7.q2':_19 _'.9_+L_3 r.':;'O'+',5 0.981_q
5 927[7 ,3._'!e-[;, 2.055a4 0.c_704[ _.gRSIC

" 0_o5") C0°5r"7, _ r.'q62_:? i._75[ " C.98752
" 5477 t" L._5_f2 _.¢w_,i42 5,q7_b2 ".g_930

] g54_io -.)5"_? '_ C.m7?_ C.05177 r.g_Oq7

] 975_1 O._O_! c._:}22 2.0g037 C.q_505
2._:3a57 L)._4757 _.'_9C5q ].793_? _.O_bQC

C._4923 ? ?.9_3R? C.9°,537 '9.qQ091 0.99846

]._;)413 C.o953f S.q9'_45 C,q9765 0.998q3
-. _'_53 a O.q_g_l g.a07_3 3.o0_16 C.g_qOa

O._g_o2 '].9'_755 '?._9a16 0.9-)a77 C.09939
C.9_',6 O.qq_h ° £.g99)2 "_.g9')_5 0.qg967

"_.q0917 r).qD_'_4 o.qqgbf C,09r)b7 O.qgq@4
C. _OTd C.q'_On3 3.')o_q7 C.9997[ 0.9q_96

Q._;gqq6 C.q'_W:_7 C.QO-_o 0,9q_9_. 9.9909b
0._']q95 ¢.9)gQ 7 _.99e_8 0.-_4901 O°ggQ96
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